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ABSTRACT
Adversarial Machine Learning (AML) is emerging as a major field aimed at protecting Machine Learning
(ML) systems against security threats: in certain scenarios there may be adversaries that actively manipulate
input data to fool learning systems. This creates a new class of security vulnerabilities that ML systems
may face, and a new desirable property called adversarial robustness essential to trust operations based
on ML outputs. Most work in AML is built upon a game-theoretic modeling of the conflict between a
learning system and an adversary, ready to manipulate input data. This assumes that each agent knows
their opponent’s interests and uncertainty judgments, facilitating inferences based on Nash equilibria.
However, such common knowledge assumption is not realistic in the security scenarios typical of AML.
After reviewing such game-theoretic approaches, we discuss the benefits that Bayesian perspectives provide
when defending ML-based systems. We demonstrate how the Bayesian approach allows us to explicitly
model our uncertainty about the opponent’s beliefs and interests, relaxing unrealistic assumptions, and
providing more robust inferences. We illustrate this approach in supervised learning settings, and identify
relevant future research problems. Supplementary materials for this article are available online.
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1. Introduction

Over the last decade, an increasing number of processes have
been automated through Machine Learning (ML) algorithms,
making it more crucial that these algorithms become robust
and reliable if we are to trust operations based on their out-
put. State-of-the-art ML methods perform extraordinarily well
on standard data, but have been shown to be vulnerable to
adversarial examples (Goodfellow, Shlens, and Szegedy 2015),
data instances targeted at fooling them. The presence of adver-
saries has been highlighted in areas such as spam detection
(Zeager et al. 2017), computer vision (Goodfellow, Shlens, and
Szegedy 2015) and automated driving systems (ADS, Caballero,
Ríos Insua, and Banks 2021). In those contexts, algorithms
should acknowledge the presence of possible adversaries to
protect from their eventual data manipulations. Comiter (2019)
provides a review from a policy perspective showing how many
AI systems, including content filters, and military and law
enforcement systems, are vulnerable to attacks. As a motivating
example, consider fraud detection: as ML algorithms are incor-
porated to such a task, fraudsters learn how to evade them. For
instance, they could find out that making a huge transaction
increases the probability of being detected, and instead would
issue smaller transactions.

As a fundamental assumption, ML systems rely on using
iid data for both training and operations (Zhang et al. 2021).
However, the security aspects of ML, part of the emerging
field of Adversarial Machine Learning (AML), challenge such
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hypothesis, given the presence of adaptive adversaries ready to
intervene to modify the data and obtain a benefit. Stemming
from the pioneering work in adversarial classification (Dalvi
et al. 2004), the prevailing paradigm in AML has modeled the
confrontation between learning-based systems and adversaries
through game theory (Menache and Ozdaglar 2011). This entails
common knowledge (CK) assumptions (Hargreaves-Heap and
Varoufakis 2004), which are questionable in the security domain
as adversaries try to hide and conceal information. Thus, there
is a need for developing a better founded paradigm: as Fan,
Ma, and Zhong (2021) point out, a framework that guarantees
robustness of ML against adversarial manipulations in a princi-
pled manner is required.

After providing an overview of key concepts and methods
in AML emphasizing the underlying game theoretical assump-
tions, we suggest an alternative formal Bayesian decision the-
oretical framework based on Adversarial Risk Analysis (ARA,
Rios Insua, Rios, and Banks 2009) and illustrate it in supervised
learning settings. We end by suggesting a research agenda.

2. Motivating Examples

Two examples serve us to motivate key issues in AML. They
showcase how the performance of ML systems may considerably
degrade under subtle data manipulations, suggesting the need to
take into account the presence of adversaries.

Case 1. Attacking spam detection algorithms. Consider spam
detection, an example of content filters which are at the
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Table 1. Accuracy (with precision) of four algorithms on clean data (untainted); attacked data and unprotected; protected through ARA during operations; protected
through ARA during training.

Algorithm Untainted Unprotected ARA op. ARA tr.

Naive Bayes 0.882 ± 0.004 0.754 ± 0.027 0.939 ± 0.006 —
Logistic Regression 0.932 ± 0.004 0.673 ± 0.005 0.898 ± 0.008 0.946 ± 0.003
Neural Network 0.904 ± 0.029 0.607 ± 0.009 0.882 ± 0.025 0.960 ± 0.002
Random Forest 0.912 ± 0.005 0.731 ± 0.008 0.807 ± 0.007 —

Figure 1. Original input and attacked version.

backbone of many security systems. We study the performance
degradation of different algorithms under the Good-Words-
Insertion attacks described in Naveiro et al. (2019a): the adver-
sary attacks spam E-mails by inserting at most two good words1

into them. Table 1 presents the accuracy of four standard algo-
rithms — naive Bayes, logistic regression, neural network (NN)
and random forest — when facing clean and attacked data,2 using
the Spambase Data Set from the UCI ML repository (Dua and
Graff 2017). Accuracy means and standard deviations are esti-
mated via repeated hold-out validation over 10 repetitions (Kim
2009). Observe, columns 2 and 3, the important loss in accuracy
of the four algorithms: major performance degradation may
affect them when ignoring the possible presence of adversaries.
Columns 4 and 5 are discussed in Section 5.

Case 2. Attacking vision algorithms. Computer vision algorithms
are at the core of many AI applications such as perception
systems in ADS (Caballero, Ríos Insua, and Banks 2021). The
simplest and most notorious attacks targeting such algorithms
consist of modifications of images so that the alteration becomes
irrelevant to the human eye, yet drives a model trained on
millions of images to misclassify the attacked ones. This attack
entails potentially relevant security consequences. As an exam-
ple, with a relatively simple convolutional NN (CNN, Goodfel-
low et al. 2016), we achieve 99% test set accuracy predicting the
handwritten digits in the MNIST dataset (LeCun, Cortes, and
Burges 1998). However, accuracy reduces to 59% if we attack
those data with the fast gradient sign method (FGSM, Szegedy
et al. 2014). Figure 1 provides examples of an original MNIST
image and an attacked one. Our CNN correctly classifies the
original image (left) as a 4; however, it misclassifies the attacked
one (right) as a 9. FGSM and related attacks described below are
easily built through low cost computational methods. In certain
settings, they require the attacker to have precise knowledge
about the architecture of the corresponding predictive model.

1Words that are common in legitimate e-mail but rare in spam.
2The logistic regression is applied with L1 regularization, which is equivalent

to performing maximum a posteriori estimation in a logistic regression
model with a Laplace prior (Park and Casella 2008). The NN has two hidden
layers.

This is debatable in most security settings and is a driving force
in this article. �

3. Adversarial Machine Learning: A Review

We review the main results and concepts in AML. We focus
on key ideas in the brief history of the field, motivating a
reflection that will lead to our alternative Bayesian framework
in Section 4. Further perspectives may be seen in Vorobeychik
and Kantarcioglu (2018), Joseph et al. (2019), Biggio and Roli
(2018), and Dasgupta and Collins (2019). We describe first the
usual workflow in AML within which most previous research
can be embedded. In general, we refer to the learning system
as defender (D, she), and to the adversary manipulating data as
attacker (A, he).

3.1. An Adversarial Machine Learning workflow

Guaranteeing protection of a learning system against attacks
involves undertaking various activities related to security eval-
uation, threat modeling, and attack simulation. Let us frame
these activities within a workflow for AML with three steps, as
in Biggio and Roli (2018): (a) gathering intelligence to study
the likely attacks that a system may face; (b) forecasting likely
attacks; and (c), protecting learning systems from such attacks.

1. Gathering intelligence. This activity is critical to ensure ML
security in adversarial environments. Obviously, any algorithm
could be fooled if adversarial data modifications are not some-
how restricted: in an extreme case, if an instance in a binary
classification problem is modified so that it is indistinguishable
from an instance of the other class, clearly, the algorithm would
misclassify such instance. However, the adversary is probably
not interested in making such data modifications as the new
instance might lose its malicious purposes. Thus, an in-depth
study of likely attackers is key in AML. In general, we should
gather information about three attacker features.

First, we assess their goals, which may range from appropri-
ating funds to causing harm to people or organizations (Couce-
Vieira, Insua, and Kosgodagan 2020). Prior to deploying a ML
system, it is crucial to guarantee robustness against attackers
with the most common goals. For instance, in fraud detection,
the attacker usually obfuscates fraudulent transactions to make
the system classify them as legitimate in search of an economic
benefit: a fraud detection system should be robust against such
attacks, trying to minimize economic losses. In general, attacker
goals are classified along two dimensions. For the first one,
violation type, a usual distinction is between integrity (aimed
at moving the prediction about particular instances toward
the attacker’s target, for example, to have malicious samples
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misclassified as legitimate); availability (aimed at increasing
the predictive error to make the system unusable) and privacy
(exploratory attacks to gather information about the ML system)
violations. The second dimension refers to attack specificity,
where the usual distinction is between targeted attacks, address-
ing a few specific defenders, and indiscriminate attacks, affecting
many defenders in a random manner (Rios Insua et al. 2021).

Second, we assess the knowledge that the adversary could have
about the ML system. At one end of the spectrum, we find white
box or perfect knowledge attacks: the adversary knows every
aspect of the system. This is almost never the case in security
scenarios, except perhaps for insider attacks (Joshi, Aliaga, and
Insua 2021). Yet, they could be useful in sequential settings
where the ML system moves first, training an algorithm to fit
its parameters; and the adversary, who moves afterwards, has
time to observe the behavior of the system and learn about it.3
At the other end, black box or zero knowledge attacks assume that
the adversary has capabilities to query the system but does not
have any information about the data, feature space, or specific
algorithms used. This is the most reasonable assumption when
attacking and defending decisions are made simultaneously. In
between, attacks are called gray box or limited knowledge, the
most common type of attacks in security settings, especially
when attacking and defending decisions are made sequentially
but there is private information that agents are not willing to
share.

Finally, the third feature refers to the adversary’s capabilities
to influence on data and other features. With poisoning attacks,
he may obfuscate training data to later induce errors during
operations. Alternatively, evasion attacks have no influence on
training data, but perform modifications during operations, for
instance when trying to evade a detection system. These data
crafting activities are typical in AML and designated to come
from a so-called data-fiddler. There could be as well attackers
capable of changing the underlying structure of the problem
affecting process parameters, called structural attackers. More-
over, some adversaries could be making decisions in parallel to
those of the defender with the agents’ losses depending on both
decisions, which we term parallel attackers.4

2. Forecasting likely attacks. In our path to enhance protection,
once having gathered intelligence about the potential attacks
to a learning system, we should produce models for how the
adversary may behave when facing new data. A central argument
for us is that such models must take into account our uncer-
tainty about adversarial aspects. As mentioned, most previous
research along these lines has been usually based on game theory
assuming full knowledge about the adversary. Thus, given some
data, the adversary would behave deterministically: the stan-
dard approach forecasts attacks solving constrained optimiza-
tion problems with different assumptions about the adversary’s
knowledge, goals and capabilities. The corresponding objective

3However, although the adversary may have some knowledge, assuming that
this knowledge is perfect is not realistic and has been criticized (Dalvi et al.
2004).

4Some attackers could combine the three capabilities in certain scenarios.
For example, in cybersecurity an attacker might add spam modifying its
proportion (structural); alter some spam messages (data-fiddler); and, in
addition, undertake his own business decisions (parallel). See Ríos Insua
et al. (2018).

function assesses attack effectiveness, taking into account the
assumptions about the attacker features. The constraints frame
assumptions such as the adversary wanting to avoid detection
or having available a maximum attacking budget. However,
full knowledge assumptions are generally unrealistic in the
AML realm as adversaries try to conceal information: adversary
modeling must take into account the lack of information and
corresponding uncertainty that we have about the adversary.
Beyond the aleatoric and epistemic uncertainties typical in risk
analysis, in AML, analysts need to consider as well concept uncer-
tainty (Banks et al. 2020). Thus, given some data, we associate
an attacking model with a probability distribution over attacks
which encodes our uncertainty about how the adversary will act
when seeing a particular instance.5

3. Protecting ML algorithms. Once relevant adversarial models
have been produced, the last step consists of protecting learning
systems against the modeled attacks. Broadly speaking, two
types of defenses have been proposed. Reactive defenses aim
to mitigate, even eliminate, the effects of an eventual attack.
They include timely detection of attacks (e.g., Naveiro et al.
2019b); frequent retraining of learning algorithms; or verifi-
cation of algorithmic decisions by experts. The second type,
proactive defenses, aim to prevent attack execution. They can
entail security-by-design approaches such as explicitly account-
ing for adversarial manipulations (Naveiro et al. 2019a) or pro-
ducing provably secure algorithms against perturbations (Gowal
et al. 2018); or security-by-obscurity techniques such as ran-
domization of algorithm responses, or gradient obfuscation to
make attacks less likely to succeed (Athalye, Carlini, and Wag-
ner 2018). A more interesting classification of defenses, later
emphasized, refers to whether the protection is carried out
at training or at operation time. Defenses of the former class,
train learning systems robustly, anticipating future adversarial
attacks. Defenses of the latter class, when receiving a potentially
attacked instance, undertake inference about possible originat-
ing instances to make the corresponding decision.

3.2. Core Concepts in Adversarial Machine Learning

Most work in AML has dealt with supervised learning fac-
ing adversarial threats, with a focus on either proposing new
attacks to learning systems to showcase their vulnerabilities
(thus, related to Steps 1–2 of the above workflow) or proposing
defenses to protect algorithms from common attacks (Step 3).

Attacks to learning systems. The most common goal of pro-
posed attacks is to modify instance covariates to induce the
learning system into making wrong decisions upon observing
or analyzing such contaminated covariates. One of the most
influential concepts triggering the current interest in AML are
adversarial examples. They are introduced within NN models
as perturbed data instances aimed at fooling NNs, obtained
through solving certain optimization problems (Szegedy et al.
2014). These models are highly sensitive to such examples; recall
case 2 in Section 2.

5Previous attacking models can be easily recovered in this framework assum-
ing degenerate distributions as later illustrated.
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Adversarial examples have traditionally targeted computer
vision systems, using techniques such as FGSM or projected
gradient descent (PGD, Madry et al. 2018). These techniques
find a constrained perturbation of an image that maximizes
the loss function used to train the computer vision system.
This optimization is usually approximated using gradient ascent
routines. In addition, attacks like these have been extended to
target other systems such as natural language processing (Zhang
et al. 2020b), due to their increasing relevance. Attacking strate-
gies targeting tabular data are usually application specific. Most
approaches model the confrontation between the attacker and
the learning system as a game (Brückner, Kanzow, and Scheffer
2012). Assuming that each agent knows their opponent’s inter-
ests and uncertainty judgments, the adversary will perform the
attacks dictated by the Nash equilibrium strategy of that game
or emerging as best responses.

Much less AML work is available in relation with unsuper-
vised learning. Kos, Fischer, and Song (2018) describe adversar-
ial attacks to generative models, where slight perturbations to the
model input may yield a reconstructed output that is very differ-
ent from the original input. Biggio et al. (2013) study clustering
under adversarial disturbances. The authors describe how to cre-
ate attacks that significantly alter cluster assignments, as well as
obfuscation attacks that slightly perturb inputs to be clustered in
a predefined assignment, showing that single-link hierarchical
clustering is sensitive to such attacks. Lastly, adversarial attacks
targeting time series forecasting systems have started to attract
interest. Alfeld, Zhu, and Barford (2016) describes an attacker
manipulating the inputs to drive the latent space of a linear
autoregressive (AR) model toward a region of interest. Similarly,
Papernot et al. (2016) propose adversarial perturbations over
recurrent NNs, and Naveiro (2021) studies adversarial attacks
against Bayesian dynamic models.

Defenses against attacks. As mentioned in Section 3.1, we dis-
tinguish two types of AML defenses: those that promote pro-
tection strategies during training, and those that protect during
operations. All these defenses assume that a clean training set is
available and the attacks happen once the ML system is deployed,
the most common case in realistic scenarios.
Protection during operations. The pioneering defense of this
type, proposed in Dalvi et al. (2004), was devoted to protect
classification systems. Given the importance of classification
in many cutting-edge ML applications, this article opens up
a research area known as adversarial classification (AC). The
authors view AC as a game between a classifier (defender),
and an adversary (attacker). During operations, upon observ-
ing a new vector of covariates, D aims at finding an optimal
classification strategy against A’s optimal attacks. Computing
Nash equilibria in such general games quickly becomes very
complex. Thus, the authors propose a forward myopic version:
D first assumes that data is untainted, computing her optimal
classification decision; then, A deploys his optimal attack against
it. Subsequently, D implements her best response against such
attack, and so on. They assume CK as all parameters of both
players are known to each other. Although standard in game
theory, this assumption is unrealistic in security settings typical
in AML, an issue acknowledged in Dalvi et al. (2004) and largely
unsolved.

Subsequent AC approaches, reviewed in Biggio, Fumera, and
Roli (2014), have focused on analyzing attacks over algorithms
and upgrading their robustness against them, always making
strong assumptions about the adversary. For instance, Lowd
and Meek (2005) consider that the attacker can send mem-
bership queries to the classifier to issue optimal attacks. Other
approaches have focused on improving Dalvi et al.’s model but,
as far as we know, none have disposed of the unrealistic CK
assumptions.
Protection during training.. An important family of AML
defenses try to robustify learning systems by modifying the
way training is performed. A relevant source of AML defenses
of this type are Adversarial Prediction Problems (APPs), whose
focus is on building adversarially robust predictive models. It
is assumed that during operations an adversary that exercises
some control over the data generation process will be present:
the data generation distributions at operations and training will
be different, jeopardizing standard prediction techniques. To
address this, APPs model interactions between the predictor and
a fictitious adversary during training as a two-agent game with a
system aimed at learning a parametric predictive model and an
adversary trying to transform the distribution governing data.
The predictor will therefore minimize the expected cost under
the operations data distribution. In turn, the fictitious adversary
will modify data optimizing his expected cost under this distri-
bution. As such distributions are not known, agents optimize
their regularized empirical costs, based on training data: the
predictor chooses her model minimizing her expected cost with
respect to an attacked version of the training data chosen so as to
minimize the adversary’s cost. The final optimization problems
are case dependent.

In Stackelberg prediction games, Brückner and Scheffer (2011)
assume full information of the attacker about the predictive
model used by the defender who, in addition, has full informa-
tion about the adversary’s costs and action space. D acts first
choosing her parameters; then, A, who observes this decision,
chooses the optimal data transformation. Finding NE in these
games leads to a bi-level optimization problem, minimizing the
defender’s cost function subject to the adversary, after observing
the defender’s choice, minimizing his cost function. As nested
optimization problems are intrinsically hard, the authors restrict
to simple classes where analytical solutions are available.6

In Nash prediction games both agents act simultaneously.
Brückner, Kanzow, and Scheffer (2012) provide conditions for
existence and uniqueness of NE in certain subclasses of these
games. Notice that APPs propose training using instances that
are attacked by “fictitious attackers,” and hope that this will
serve as a proxy for dealing with real attackers. However, it
is assumed that the fictitious attackers’ costs and probabilities
are CK, which is not realistic in security scenarios. Deviations
from the assumed attackers’ models potentially lead to severe
performance degradation as we later illustrate.

Another important family of defenses that affect the train-
ing stage are those that aim at robustifying models against
adversarial examples. Adversarial training (AT) (Madry et al.

6More recently, Naveiro and Insua (2019) provide efficient gradient methods
to approximate solutions in more general problems.
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2018) is the most important one. It aims at choosing a para-
metric model (usually a NN) that minimizes the empirical risk
evaluated under worst-case data perturbations. Thus, it can be
viewed as a zero-sum version of an APP: in AT, the fictitious
attacker is assumed to select the data manipulation that maxi-
mizes the defender’s costs within some constrained region. AT
approximates the inner optimization through the PGD algo-
rithm, ensuring that the perturbed input falls within a tolerable
boundary, usually specified through some restriction on a norm
distance. Attack complexity depends on the chosen norm. How-
ever, recent pointers urge modelers to depart from using norm
based approaches (Carlini et al. 2019) and develop more realistic
attack models as in Brown et al.’s (2017) adversarial patches.

Liu et al. (2018) adapted the idea of AT to Bayesian
NNs, using the notion that incorporating randomness in the
NN weights enhances their robustness. They propose training
Bayesian NNs using mean-field variational inference. However,
as in AT, instead of maximizing the evidence lower bound
(ELBO) under the original training instances, they propose
maximizing the ELBO under a worst-case attacker that chooses
the best data manipulation inside a ball in a normed space. As
with AT, this heuristic implicitly assumes full knowledge in the
construction of the fictitious attacker, not taking into account
the existing uncertainty. This may produce performance degra-
dation when dealing with actual, unknown attackers. Finally,
another relevant but more heuristic family of defenses is called
adversarial logit pairing (Kannan, Kurakin, and Goodfellow
2018) in which logits of pairs of attacked and clean instances are
encouraged to be the same, thus, yielding the same prediction
for both.

All defenses presented assume full knowledge in the attacking
models, leading to deterministic attacks. Taking into account
existing uncertainties about adversaries would be crucial to
produce sensible defenses. This is the goal of the Bayesian frame-
work for AML presented in Section 3.1.

Adversarial Reinforcenment Learning. While there is consider-
able AML research in supervised and unsupervised learning,
much less work is available in relation to reinforcement learning
(RL). In it, adversarial aspects refer to the presence of agents
whose decisions affect the reward perceived by our supported
agent. The prevailing solution approach in standard RL is Q-
learning (Sutton and Barto 1998); its adaptation to large prob-
lems, deep Q-learning, has faced an incredible growth recently
(Silver et al. 2017). It relies on models, such as convolutional
NNs, to process input information. Consequently, the adver-
sarial examples described above apply when fooling RL systems
(Lin et al. 2017).

Single-agent RL methods fail in presence of other agents that
interfere with their learning process, as they do not take into
account the nonstationarity due to the other agents’ actions: Q-
learning may lead to sub-optimal results (Buşoniu, Babuška, and
De Schutter 2010). Thus, a deployed RL system must be able
to reason about and forecast the adversaries’ behavior. Several
methods to enhance Q-learning in multiagent systems have been
proposed, mostly focusing on adapting ideas from game theory
into RL, mainly focusing on modeling the multiagent system
through Markov games. Three well-known solutions (Tuyls and
Weiss 2012) are minimax-Q learning; Nash-Q learning; and

friend-or-foe-Q learning, but these come with unrealistic CK
assumptions or can only be applied in restrictive scenarios.

Further comments. Practically all ML methods have been
touched upon from an adversarial perspective. Of major impor-
tance in this field is the cleverhans (Papernot et al. 2018)
library, aimed at accelerating research in developing new attack
threats and more robust defenses specifically for deep neural
models.

AML is a difficult area which evolves rapidly and leads to an
arms race in which the community alternates cycles of proposing
attacks and implementing defenses that deal with them. Thus, it
is important to develop sound techniques. Note that, stemming
from Dalvi et al. (2004), most of AML research has been framed,
sometimes implicitly, within a standard game theory approach
characterized by NE and refinements. However, these entail CK
assumptions which are hard to maintain in the security contexts
typical of AML. We next propose a Bayesian decision theoretical
methodology to solve AML problems, using an ARA perspective
(Rios Insua, Rios, and Banks 2009) to model the confrontation
between attackers and defenders mitigating questionable CK
assumptions.

4. A Bayesian Workflow for AML

We now revisit the workflow in Section 3.1 proposing a Bayesian
decision theoretical alternative to AML. It is based on ARA,
which operationalizes the Bayesian approach to games (Kadane
and Larkey 1982) and facilitates a procedure to forecast adver-
sarial attacks. ARA provides prescriptive support to a decision
maker (DM), the ML system in our case, facing one or more
attackers whose actions affect her decision making process. The
DM is assumed to be a rational, expected utility maximizing
agent. Her utility and beliefs (epistemic uncertainty) depends
on her decision, the adversaries’ rationality and decisions (con-
cept uncertainty), and possibly some other random variables
(aleatoric uncertainty). Since CK is not assumed, random vari-
ables model adversaries’ decisions that must be integrated out
to compute expected utilities. ARA provides a coherent pro-
cedure to obtain probabilistic forecasts of adversaries’ actions.
The main idea is to model the adversaries’ decision making
process, putting priors on unknown quantities to reflect the
lack of knowledge. This way, the optimal adversarial decision
becomes probabilistic. Simulations from such random optimal
decisions are used to compute the DM’s expected utility.

Our focus will be on protecting a supervised learning system
(D) which receives instances described by covariates x ∈ R

d,
with each instance having an associated output y. Uncertainty
about the instances’ output given its covariates is modeled
through a distribution p(y|x). This distribution can arise from
a generative model, where distributions p(x) and p(x|y) are
modeled explicitly and p(y|x) is obtained via Bayes formula; or
from a discriminative model, in which p(y|x) is modeled directly
(Bishop 2006). It may be derived through maximum likelihood
or in a Bayesian way using training data which, by assumption, is
free of attacks. Whichever estimation method is adopted, upon
observing a new instance with covariates x, the Defender must
decide the corresponding output. As D is rational, she decides
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based on maximum predictive utility through

arg max
yD

∫
u(yD, y)p(y|x)dy,

where u(yD, y) is the utility that she perceives when an instance
whose actual output is y is assigned output yD.7 In adversarial
settings, agent A applies an attack a to the features x leading to
the transformation x′ = a(x), the observation actually received
by D. We focus on exploratory attacks, which affect just over
operational data, leaving training data untainted. Let us revisit
the three stages of the workflow.

1. Gathering intelligence. This stage entails modeling the
attacker’s problem. Assessing his goals requires determining the
actions that he may undertake and the utility that he perceives
when performing a specific action, given a defender’s strategy:
the output is the set of attacker’s decisions and a functional form
for his utility, generally dependent on his and the defender’s
decisions. Assessing the attacker knowledge entails looking for
information that he may have when performing the attack, and
his degree of knowledge about it, as we do not assume CK.
This requires not only a modeling activity, but also a security
assessment of the ML system determining which of its elements
(training data, feature space, architecture, loss function, param-
eters, etc.) are accessible to the attacker. Finally, identifying his
capabilities requires determining which part of the defender
problem the attacker has influence on.

Consider an adversary aiming at fooling a supervised learn-
ing system by modifying the value of the covariates. The adver-
sary receives objects with covariates x and output y and manip-
ulates x, transforming them into x′. His goal is to induce the
defender to make nonoptimal decisions for the output cor-
responding to the observed covariates. Following a norma-
tive decision theoretical perspective, we model the adversary
as a rational agent choosing data manipulations to maximize
expected utility. Let uA(yD, y) be the adversary’s utility when the
defender assigns output yD to an instance whose actual output is
y. This utility can also depend on the specific data manipulation,
as distinct manipulations can entail different costs; however, to
simplify notation we do not include explicitly this dependence.
The adversary thus chooses data manipulations through

x′(x, y) = arg max
z

∫
uA(yD, y)pA(yD|z = a(x))dyD, (1)

where pA(yD|z = a(x)) models the adversary’s belief about the
defender’s decision upon observing the manipulated instance
z = a(x).

2. Forecasting likely attacks. Based on Step 1, we produce models
for how the adversary would modify data, encoding not only
the information gathered, but also our uncertainty about the
adversary’s elements. The output of this stage is an attacking
model, a probability distribution over adversarial manipulations
that encodes all relevant uncertainties. A formal Bayesian way
to do this, as suggested by ARA, is to place priors on every
unknown element of the adversary’s decision making problem.
The uncertainty implied by these priors is propagated to the

7If the output is discrete rather than continuous (as in classification problems)
the integral is replaced by a sum.

optimal adversarial data modification that becomes random.
Its associated probability distribution conforms to the attack-
ing model used to protect the learning algorithm. In general,
evaluating analytically such model will be unfeasible. However,
in most cases it is conceptually and computationally simple
to sample from it. This just entails sampling from our priors
and, for each sample, solving the adversary’s decision making
problem, which provides a sample from the random optimal
data manipulation. In our adversarial supervised learning con-
text, the adversary will produce data manipulations solving (1).
Under standard CK assumptions, our attacking model would be
p(x′|x) = δ

(
x′ − arg maxz

∫
uA(yD, y)pA(yD|z)dyD

)
. However,

as argued, CK rarely holds in security domains there being
multiple sources of uncertainty. First of all, unlike the adversary,
we do not know the actual output y for a given instance x.
Thus, our attacking model must account for this uncertainty
through p(x′|x) = ∫

p(x′|x, y)p(y|x)dy. Sampling from p(y|x)

is standard. Sampling from p(x′|x, y) is more complex, as we
usually have uncertainty about the adversary’s utility uA(yD, y)
and his probability estimates pA(yD|z). We propose modeling
such uncertainty with, respectively, random utilities UA and
random probabilities PyD

A defined, without loss of generality, over
an appropriate common probability space (�,A,P) with atomic
elements ω ∈ �. This induces a distribution over the Attacker’s
optimal attack defined through

X′
ω(x, y) = arg max

z

∫
Uω

A (yD, y)Pω
A(yD|z)dyD,

leading to p(x′|x, y) = P(X′
ω(x, y) = x′). In such a way, our

model for p(x′|x, y) properly accounts for the existing uncer-
tainty about the adversary. By construction, if we sample utilities
and probabilities from their corresponding priors and solve
(1), this solution would be distributed according to p(x′|x, y).
Overall, to produce samples from p(x′|x), we first sample from
y from the posterior predictive distribution p(y|x), and then x′
from p(x′|x, y).

The specifications of random utilities and random proba-
bilities are application-specific. Guidelines for adversarial clas-
sification are given in Gallego et al. (2020). Notice that, to
model our uncertainty about the adversary, we study his deci-
sion making problem from our point of view. Obviously, when
analyzing the Attacker’s problem, we must take into account his
uncertainty about our elements; for example, his uncertainty
about the defender’s decision upon observing the manipulated
instance. This could lead to a infinite hierarchy of decision
making problems as presented in Rios and Insua (2012), albeit
in a simpler context. One would typically model several steps in
the hierarchy and stop at a level in which no more information is
available. At that stage, noninformative priors over the involved
probabilities and utilities can be used.

To sum up, we have now a general, formal, decision-theoretic
alternative to produce attacking models, that is, samples from
p(x′|x), keeping CK assumptions at a minimum. Note, however,
that previous attacks proposed in the literature can be adopted
within the proposed workflow. For instance, consider the FGSM
attack (case 2, Section 2): it assumes that the defender uses
a parameterized model with parameters θ , trained minimiz-
ing a loss function L(θ , x, y); the attacker has full knowledge
about such loss, or at least its gradient and has resources to
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perturb the covariates by adding a small vector ε. Under this
CK setting, the proposed (deterministic) attack is x′ = x + ε ·
sign

[∇xL(θ , x, y)
]
, leading to an attacking model p(x′|x, y, θ),

degenerated at such x′.
Our proposed attacking model would be classified as gray

box since, even if perfect knowledge is not assumed, certain
assumptions about the adversary are being made such as him
being an expected utility maximizer. One of the advantages of
the proposed approach is its ability to create more complex
attacking models; for example, through mixtures of attackers
with different solution concepts (Rios Insua, Banks, and Rios
2016). Finally, for purely black-box settings in which the attacker
is only assumed to have query access to the target learning
system, an interesting approach to produce attacking models has
been recently introduced (Lee et al. 2022). Here, the authors
propose to generate attacks using Bayesian optimization, model-
ing the (unknown) attacker’s objective function with a Gaussian
process that is sequentially updated after the queries’ results are
received.

3. Protecting ML algorithms. Once with a reasonable probabilistic
attacking model, we protect our learning system against such
attacks, either at operations or training.
Protection during operations. The Defender observes a poten-
tially attacked vector of covariates x′. Based on it, she has
to assign an output yD. An adversary-unaware D will make
this decision by maximizing the posterior predictive utility,
arg maxyD

∫
u(yD, y)p(y|x′)dy. In terms of the spam detection

example (Section 2), x′ would represent the words used in an
E-mail, potentially manipulated by a spammer, and yD corre-
sponds to labeling such E-mail as spam or legitimate. As illus-
trated, solving this classification using an adversary-unaware D
could lead to serious performance degradation.

Upon observing x′, D is uncertain about the actual originat-
ing vector of covariates x (the words of the originating E-mail).
She may model this uncertainty through a distribution p(x|x′)
and decide based on the posterior predictive utility, where x has
been marginalized out

arg max
yD

∫
u(yD, y)

[∫
p(y|x)p(x|x′)dx

]
dy, (2)

where conditional independence of y and x′ given x is assumed.
Thus, when adversaries are present, rather than deciding based
on the posterior predictive distribution of a new instance, we
do it based on what we designate the robust adversarial poste-
rior predictive distribution (RAPPD)

∫
p(y|x)p(x|x′)dx. This is

generally not available in closed form and has to be evaluated
numerically using Monte Carlo methods. The key step for this
is the ability to sample from p(x|x′), that is, the distribution of
possible originating covariates given the observed ones x′. Here
is where the attacker models from Step 2 come into play. Having
constructed a model for p(x′|x) and being able to sample from it,
all we need is to generate samples from the inverse distribution
p(x|x′). Techniques for this based on Approximate Bayesian
Computation (ABC) are discussed in Gallego et al. (2020). In
terms of the spam detection case, the attack model p(x′|x) would
reflect D’s uncertainty about the manipulated words x′ that the
adversary selects, given the E-mail with words x.

Protection during training. As mentioned, other defenses mod-
ify how training is performed in order to take into account
the possible presence of an adversary during operations. Their
goal is to train using artificial data that somehow mimic actual,
potentially attacked, operational data through several heuris-
tics. Most of them model how the attacker would modify the
instances in the training set. Having trained the classifier in
this manner, p(y|x′) could be directly evaluated at the operation
stage as this probability has been inferred taking into account
the presence of an attacker. As discussed, these methods assume
models for how the attacker would modify training instances
that do not take into account the existing uncertainty. For
instance, AT, as a proxy to robustify classifiers against attacks,
considers an attacker that produces the worst data modifica-
tion for the classifier, assuming explicitly that the classifier has
knowledge about the attacker’s objectives, and implicitly that he
has knowledge about the classifier’s utility. However, in realistic
settings, we would not have precise information about how the
attacker modifies a given instance, as we do not know, in gen-
eral, his intentions and probability assessments. Thus, assuming
a deterministic attack for robustification purposes may result
inappropriate. We believe that it is crucial to account for such
uncertainty explicitly.

Ye and Zhu (2018) take a step in this direction. They provide
a Bayesian counterpart of AT, designated Bayesian Adversarial
Learning, assuming that the Defender has observed clean train-
ing data D = {xi, yi}N

i=1 which are samples from an unknown
distribution. Based on this, an adversary unaware defender using
a model parameterized by θ will simply compute the posterior
p(θ |D) and employ this to calculate the predictive distribution
used during operations. However, the presence of an adversary
at operations changes the data-generation mechanism, Thus,
using the original D for inference could lead to large perfor-
mance degradation. Instead, the authors suggest computing a
robust adversarial posterior distribution (RAPD) over the param-
eters

∫
p(θ |D̃)p(D̃|D)dD̃, where D̃ refers to the manipulated

training data. Gibbs sampling provides samples from it iterating
through

D̃(t)|θ(t−1),D ∼ p(D̃|θ(t−1),D), (3)

θ(t)|D̃(t) ∼ p(θ |D̃(t)). (4)

After a burn-in period, samples {θ(T), D̃(T)} follow the joint
posterior p(θ , D̃|D) and, consequently, sample θ(T) follows the
RAPD. The distribution p(D̃|θ ,D) quantifies our uncertainty
about the data generation process; that is, about how the adver-
sary will modify data D.

As with attacks, if we assume a high degree of CK, earlier
defense mechanisms can be framed within our workflow. In
AT, the defender uses a parametric model with parameters θ .
An adversary unaware D makes inference about θ minimiz-
ing a loss function

∑N
i=1 L(θ , xi, yi), with N training points.

When taking into account the adversary, AT proposes minimiz-
ing

∑N
i=1 max‖γ ‖≤ε L(θ , xi + γ , yi); that is, minimize the loss

evaluated under worst-case perturbations in some constrained
region.

Most common losses can be written as negative log posterior
distributions. Thus, for the rest of the discussion, assume that
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the loss function can be written as
N∑

i=1
L(θ , xi, yi) = −

N∑
i=1

log p(xi, yi|θ) − log p(θ). (5)

If we assume that, for some fixed value of θ , p(D̃|D) has the form

p(D̃|D) =
N∏

i=1
p(̃xi, yi|xi, yi)

=
N∏

i=1
δ

(̃
xi −

[
xi + arg max‖γ ‖≤ε

L(θ , xi + γ , yi)

])
,

and we recover AT as a maximum a posteriori (MAP) estimate
of θ under the robust adversarial posterior distribution. Indeed,
notice that the robust posterior can be written∫

p(θ |D̃)p(D̃|D)dD̃ = p(θ |{(x∗
i , yi)}N

i=1),

where x∗
i = xi+arg max‖γ ‖≤ε L(θ , xi+γ , yi). The MAP estimate

of θ is

θMAP = arg max
θ

[
log p(θ |{(x∗

i , yi)}N
i=1)

]
= arg min

θ

[
− log

N∑
i=1

p(x∗
i , yi|θ) − log p(θ)

]
,

which, according to (5) is nothing else but the loss evaluated
under the worst-case transformation x∗

i . Thus, AT is a special
case of our workflow, in which we assume CK in the sense
that the attacking model p(D̃|D) is deterministic; that is, a
degenerate distribution.

There are several ways of sampling from the conditionals
(3) and (4). Rios Insua, Naveiro, and Gallego (2020) propose
a scalable way of doing it leveraging efficient SG-MCMC sam-
pling algorithms, and, in particular, stochastic gradient Langevin
dynamics (SGLD, Welling and Teh 2011). First, to account for
the uncertainty that the defender has over the attacking model,
the authors propose defining p(D̃|D, θ) ∝ exp {L(θ , xi, yi)}.
Under SGLD, sampling iterations adopt the form

xi,t+1 = xi,t − ε ∇x(log p(y|xi,t , θ) + log p(θ)) + ξt , (6)

with ξt ∼ N (0, 2ε), and t = 1, . . . , T with xi,1 = xi. Note that
this is a sampler from the distribution p(D̃|D, θ) and we approx-
imate this distribution with the set of attacked samples {x∗

i }N
i=1,

setting x∗
i = xi,T . Further uncertainties can also be accounted

for; let us denote with λ the vector of hyperparameters of the
optimizer, such as the step sizes εt or the number T of iterations.
Then, we have p(D̃|D, θ) = ∫

p(D̃|D, θ , λ)p(λ)dλ. To generate a
perturbed data sample from the previous distribution, we need
to sample from p(λ). For instance, we could sample the step
sizes εt from a beta distribution over [1e − 5, 1e − 3], which
are typical values in computer vision tasks using deep NNs;
the number of iterations T could be sampled from a Poisson
distribution. Moreover, we could consider mixtures of different
attackers, for instance by sampling a Bernoulli random variable
and then choosing the gradient corresponding to either FGSM
or another attack, such as Carlini and Wagner’s (2017).

The attacker might have also uncertainty over the model the
defender adopts, let it be the concrete model architecture or its

parameters’ values. Accounting for this would entail that the
previous sampling scheme is done over an uncertain defender
model p(y|x, θ) and start a hierarchy of level-k thinking (Rios
and Insua 2012), which can be computationally intractable.
Instead, we propose mixing both steps and sample from the
posterior distribution of the defended model rather than just
arriving at θMAP. To do so efficiently, if the model is optimized
using gradient descent routines (as usual with deep NN models),
we can again leverage SG-MCMC techniques to sample from the
robust posterior p(θ |{(x∗

i , yi)}N
i=1), by repeating the following

procedure for some number of training iterations:

1. Sample perturbed samples x1, . . . , xK ∼ p(D̃|D, θ) using the
sampler from (6), or from the natural distribution, for a mini-
batch of size K.

2. Update θt+1 = θt − ε∇ ∑K
i=1 L(θt , xi, yi) + N (0, 2εI)

In the end, we collect S samples {θi}S
i=1 from the robust posterior

distribution. Then, given an instance x, we compute the pre-
dicted output yD approximating the posterior predictive utility
using MC.

5. Case Studies

We illustrate the proposed defense mechanisms through the
motivating examples from Section 2.8

Case 1. Spam detection. Consider the set-up from Section 2.

Protection during operation. For the first batch of experiments,
we use the same algorithms in Section 2. Recall the severe per-
formance degradation resulting from Good-Words-Insertion
attacks (Table 1, cols. 2 and 3). Once the models are trained,
we perform attacks over the instances in the test set, solving
problem (1) for each test spam E-mail, assuming certain val-
ues for the attacker’s utilities and probability judgements. D
is uncertain about the attacker’s elements and models these
uncertainties with random utilities and probabilities: we use
beta distributions centered at the attacker’s actual utility and
probability values with variances chosen to guarantee that the
distribution is concave in its support (they must be bounded
from above by min

{[μ2(1−μ)]/(1+μ), [μ(1−μ)2]/(2−μ)
}

,
where μ is the corresponding mean). The variance size informs
about the degree of knowledge the defender is assumed to have
about the attacker; reflecting a moderate lack of knowledge, we
set the variance to be 10% of this upper bound. Of course, we
are assuming certain degree of knowledge about the adversary,
as the expected values of the random utilities and probabilities
coincide with the actual values used by the attacker. We later
study how deviations from the assumed attacker behavior affect
performance.

Having a model for the attacker, for each instance x′ of the
test set, the defender computes the robust adversarial posterior
predictive distribution

∫
p(y|x)p(x|x′)dx, and assigns x′ to the

class maximizing the posterior predictive utility (2). To compute
the RAPPD, samples from p(x′|x) are obtained leveraging the
ability to sample from the attacker model and using ABC as in
Gallego et al. (2020).

8Code to reproduce these experiments is available at https://github.com/
roinaveiro/aml_bayes.

https://github.com/roinaveiro/aml_bayes
https://github.com/roinaveiro/aml_bayes
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Table 2. Average accuracy plus minus one standard deviation of four algorithms on
attacked data without defense (col 2); with CK defense (col 3); and with ARA defense
(col 4).

Classifier Acc. Taint. Acc. CK Taint. Acc. ARA Taint.

Naive Bayes 0.793 ± 0.005 0.867 ± 0.004 0.883 ± 0.005
Logistic Reg. 0.687 ± 0.008 0.803 ± 0.007 0.864 ± 0.005
Neural Network 0.774 ± 0.007 0.767 ± 0.007 0.792 ± 0.006
Random Forest 0.682 ± 0.005 0.819 ± 0.007 0.821 ± 0.007

Column 4 in Table 1 compares the average accuracy of the
robustified during operation classifiers on tainted data. As can be
seen, our approach allows us to reduce the performance degra-
dation of the four original classifiers, showcasing the benefits of
explicitly modeling the attacker’s behavior in adversarial envi-
ronments. Interestingly, in the naïve Bayes case, our approach
even outperforms the algorithm behavior under untainted data
(column 2). This effect has been observed also in Naveiro et al.
(2019a) and Goodfellow, Shlens, and Szegedy (2015) for other
algorithms and application areas. This is likely due to the fact
that the presence of an adversary has a regularizing effect, being
able to improve the original accuracy of the base algorithm, and
making it more robust.

The previous experiment used beta distributions centered
around the values actually employed by the attacker to quantify
the uncertainty about the attacker’s utility and probability. It
is natural to explore how deviations from the assumed values
affect performance. Our second batch of experiments tests the
approach against an attacker whose utilities and probabilities
are different from those assumed by the defender. In particu-
lar, for each attack, A deviates uniformly around the assumed
probability and utility. The size of the deviation is constrained
to be less than 50% the assumed value: if we center our beta
distribution for, for example, the attacker’s probability at value μ,
the attacker will deviate from the assumed behavior in the range
(0.5 ·μ, 1.5 ·μ). Thus, in this experiment, our beta distributions
will be centered around wrong values. We set the variance of the
beta priors to be relatively high, at 50% of the upper bound, and
compare our approach with the CK one, in which the elements of
the attacker are assumed to be known, and thus are point masses
(on wrong values).

Table 2 shows average accuracy plus minus one standard
deviation (estimated through repeated hold out validation) of
the four algorithms on attacked data without defense (col. 2),
the standard CK defense (col. 3) and, finally, our ARA defense
(col. 4). Note first the overall performance drop with respect to
the results in Table 1 col. 4: when the attacker deviates from
his assumed behavior, the performance of both ARA-based and
CK defenses is lower. However, we can also observe that the
ARA-based defense outperforms the CK defense for all clas-
sifiers: when the attacker deviates from the assumed behavior,
accounting for the uncertainty over his elements is beneficial.
This experiment showcases the increase in robustness due to
modeling uncertainty in scenarios in which CK is not realistic.

Protection during training. We next assess ARA based robustifi-
cation during training. This requires the underlying model to be
differentiable in the parameters, thus, leaving just two candidates
among the original models: logistic regression and NN. Both
models can be trained using SGD plus noise methods to obtain

uncertainty estimates from the posterior. Next, we attack the
clean test set using the procedure in Section 2 and evaluate
the performance of our robustification proposal. Since we are
dealing with discrete attacks, we cannot use the uncertainty over
attacks as in (6). Instead, we model it using the distribution
p(x′|x) and take samples from it as discussed in step 3 from
our Section 4 workflow. We evaluate the Bayesian predictive
distribution using S = 5 posterior samples obtained after
T = 2000 SGLD iterations, and present the results in Table 1,
col. 5. Observe again that the proposed robustification process
protects differentiable classifiers, recovering from the degraded
performance under attacked data. Note that the robustified algo-
rithms achieve even higher accuracies than those attained by the
original classifier over clean data, due to the regularizing effect
mentioned above.

Case 2. Vision. When the input data is high-dimensional (such
as with images), our ARA robustification at operation easily
becomes computational intractable. We thus robustify model
at training. For illustration purposes, we perform additional
experiments using two benchmarks: Fashion-MNIST, a clothing
classification problem (Xiao, Rasul, and Vollgraf 2017), and
Kuzushiji-MNIST, a traditional Japanese handwritten character
recognition problem (Clanuwat et al. 2018). For both datasets
we trained standard deep NNs over their respective training sets
(consisting of 60.000 images each) using SGD (i.e., no defense),
adversarial training (AT defense), and our robustification pro-
cedure from Section 4 (ARA defense). We then attacked the
respective test sets using five iterations of PGD, with varying
attack intensities (the step-size ε in (6)), and evaluated the
accuracies of both models under these attacked test sets. Figure 2
displays these results. Note that our scalable approach from Sec-
tion 4 offers fairly superior robustification defenses compared
to the AT defense mechanism, showing that incorporating the
uncertainties provided by the ARA methodology has additional
benefits when adversarially training a ML model in diverse
datasets.

6. Conclusion

We have provided a review of key approaches, models, and
concepts in AML. This area is of major importance in security
and cybersecurity to protect systems that increasingly rely on
ML algorithms (Comiter 2019; Ciancaglini et al. 2020). The pio-
neering work by Dalvi et al. (2004) framed most of this research
within the game theory realm, with entailed CK conditions
which hardly hold in AML security contexts.

We have proposed a Bayesian alternative to AML. Its main
difference with respect to previous approaches is that unreal-
istic CK conditions are not entailed. As a consequence of the
increased realism, the resulting models are more robust, espe-
cially with respect to deviations in the assumed attacker behav-
ior, given the better reflection of the involved uncertainties as
empirically illustrated. Our Bayesian framework enjoys greater
flexibility than previous game-theoretic approaches, some of
which can be framed as limit or degenerate cases of our proposal.
However, the increased robustness and flexibility comes at a
higher computational and modeling costs. Investigating how to
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Figure 2. Robustness of a deep network against the PGD attack under three defense mechanisms (NONE, AT, ARA). (a) depicts the security evaluation curves for the attacked
Fashion-M. dataset. (b) depicts the respective curves for the attacked Kuzushiji-M. dataset.

alleviate these costs is an open research question. Related to this,
we sketch several promising avenues for future work.

A promising research line consists of developing efficient
algorithms for approximate Bayesian inference with robust-
ness guarantees. For example, regarding opponent modeling in
sequential decision making, an agent has uncertainty over her
opponent type initially; as more information is gathered, she
might reduce her uncertainty via Bayesian updating. Similarly,
work in robust Bayesian analysis (Rios Insua and Ruggeri 2000),
in particular referring to likelihood robustness, is relevant. Not
taking into account an attacked data generation process is an
example of model misspecification; robustness of Bayesian infer-
ence to such issue has been revisited recently in Miller and
Dunson (2019).

There are also several enhancements aimed at improving
operational aspects of the framework. For example, we discussed
only problems with two agents. It would be relevant to deal
with multiple agents, including cases in which agents on attack
or defense attempt to cooperate. There is also potential in new
algorithmic approaches. Exploring gradient-based techniques
for bi-level optimization problems arising in AML is a fruitful
line (Naveiro and Insua 2019). More efficient MCMC samplers
can be adopted in the proposed workflow (Gallego and Insua
2018). Recall that our framework essentially goes through sim-
ulating from the attacker problem to forecast attacks and then
optimizing for the defender to find her optimal decision. This
may be computationally demanding and we could explore single
stage approaches, such as augmented probability simulation
(Ekin et al. 2022).

As mentioned in Section 3.2, adversarial versions of various
ML problems have been studied. However, further research is
required in unsupervised learning, including clustering meth-
ods, dynamic linear models (Naveiro 2021), natural language
processing models (Wang et al. 2019), and in RL, including
policy gradient (Lin et al. 2017) and extensions to semi-Markov
Decision Processes (Du, Futoma, and Doshi-Velez 2020).

Applications, such as those presented in Comiter (2019)
and Ciancaglini et al. (2020), are abound. We mention four of
direct interest to us: (i) the development of defenses against fake
news; (ii) the development of robust ADS algorithms (Caballero,
Ríos Insua, and Banks 2021); (iii) the use of AML for improving

counterfactual inference in observational studies (Johansson,
Shalit, and Sontag 2016); and (iv) leveraging ideas from causal
inference to improve adversarial robustness (Schölkopf et al.
2021). Several recent works, for instance, aim to improve the
robustness of deep NNs for image classification by leveraging a
causally informed model of unseen perturbations or adversarial
examples (Zhang, Zhang, and Li 2020a; Zhang et al. 2021).

Supplementary Materials

Python code to reproduce the results presented in this article is avail-
able at https://github.com/roinaveiro/aml_bayes. Reproducibility workflow
is included in the repository’s readme file.
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