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Abstract. Data Augmentation approaches often use Language Models,
pretrained on large quantities of unlabeled generic data, to condition-
ally generate examples. However, the generated data can be of subpar
quality and struggle to maintain the same characteristics as the origi-
nal dataset. To this end, we propose a Data Augmentation method for
low-resource and imbalanced datasets, by aligning Language Models to
in-domain data prior to generating synthetic examples. In particular,
we propose the alignment of existing generic models in task-specific un-
labeled data, in order to create better synthetic examples and boost
performance in Text Classification tasks. We evaluate our approach on
three diverse and well-known Language Models, four datasets, and two
settings (i.e. imbalance and low-resource) in which Data Augmentation
is usually deployed, and study the correlation between the amount of
data required for alignment, model size, and its effects in downstream
in-domain and out-of-domain tasks. Our results showcase that in-domain
alignment helps create better examples and increase the performance in
Text Classification. Furthermore, we find a positive connection between
the number of training parameters in Language Models, the volume of
fine-tuning data, and their effects in downstream tasks.

Keywords: Natural Language Processing · Data Augmentation · Low-
Resource Data · Imbalanced Data · Text Classification

1 Introduction

Modern Deep Learning applications typically require a very large amount of la-
beled training data [30] to operate in a satisfactory manner. While some Large
Language Models [39,6,29] have been capable of achieving state-of-the-art per-
formance with only a handful of labeled examples, Few-Shot learning, in which
a small number of examples are provided as contextualized prompts, remains a
challenging task [5]. Data Augmentation acts as a countermeasure to the lack of
sufficiently labeled training data, serving as an effective strategy in artificially
increasing the size of a training dataset.
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In addition, commonly, label distribution in the real world is rarely balanced,
especially in the case of user generated content, a fact which is often reflected in
the training data and thus resulting in poor performance of the trained models
[14]. Solving class imbalance in the training data is usually dealt with over or
under sampling techniques from the dominant or subservient class, respectively
[8,25]. However, these approaches can lead to overfitting and loss of valuable
information, respectively.

With Data Augmentation, the goal is to generate examples for specific classes
such that the training dataset is increased. While traditional Natural Language
Processing (NLP) Data Augmentation techniques [35,38] often struggle to main-
tain the correct label for the created examples, modern approaches utilizing
Language Models (LMs) have made significant strides in this area [37,1,19]. Ef-
fectively, having the ability to automatically generate class-specific examples
can significantly contribute to both low-resource scenarios where labeled data
are scarce, as well as in tasks with label imbalance. What is more, as we avoid
over and under sampling examples (e.g. by randomly creating copies or deleting
examples from the minority and majority class, respectively) we minimize the
risk of overfitting and information loss, respectively.

With LM-based Data Augmentation approaches, the use of LMs pretrained
on generic domains often results in generated examples that do not reflect a task’s
specific characteristics. This paper explores the effects of in-domain alignment
for LM-based Data Augmentation, i.e. fine-tuning pretrained LMs on domain
specific data given a certain task. We evaluate our approach in both extremely
low-resource and highly imbalanced settings for Text Classification. Specifically,
we expand the work of [19], which establishes a method for utilizing popular and
state-of-the-art LMs to create synthetic data.

Concretely, in this work, we fine-tune three diverse LMs (GPT2, BERT, and
BART) on in-domain data to align the pretrained models with the domain’s char-
acteristics. This alignment is performed with three increasing sizes of in-domain
data to examine the correlation between different LMs and in-domain data vol-
ume. We also investigate the effectiveness of Data Augmentation on datasets
with user generated texts of differing lengths, namely the SST-2, SNIPS, and
TREC datasets used in previous works [1,19] and also the Rotten Tomatoes
(RT) dataset [26], which has significantly longer texts compared to the mod-
erately sized texts of the other three datasets. Moreover, to further assess the
robustness and validity of the in-domain alignment for Data Augmentation, we
simulate extreme label imbalance for the in-domain corpora by under-sampling a
single class of the training set. By artificially doubling and balancing the minor-
ity class example with domain-aligned LMs, we showcase the performance gains
among aligned LM Data Augmentation, non-aligned LM Data Augmentation
and no augmentation. Overall, we highlight the effects of in-domain alignment
with a BERT-based classifier [12] for both in- and out-of-domain corpora.

To sum up, our contributions are as follows: (a) we showcase that in-domain
alignment can help produce better results in low-resource and imbalanced Text
Classification, (b) we investigate the volume of data required for alignment in
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different models and settings, and (c) we show that minority class Data Aug-
mentation following in-domain alignment can greatly improve the performance
in imbalanced Text Classification tasks.

2 Related Work

Data Augmentation (DA) has taken many forms, from simple alterations to the
initial content [35,13] to automatically generating artificial (synthetic) examples
[1,19,27].

Early approaches to DA focus on artificially altering the text through a series
of transformations. EDA [35] proposes the replacement of certain words, word
swapping, and random insertion and deletion of words to alter the original con-
tent, while ADEA [17] adds artificial noise by inserting strings of punctuation
marks. Similarly, [38] uses interpolation and n-gram smoothing as a means of
introducing noise, while [32] proposes the use of back-translation, i.e. translating
a sample to another language and converting it back to the original language.
SMERTI [13] presents a semantic approach towards text replacement with the
focus being on maintaining the sentiment and fluency of the original text.

Utilizing the advantages of LM pretraining, a plethora of approaches have
been designed based on LM capabilities [4]. In general, LM-based DA approaches
exploit the training objectives and text prompting techniques to condition the
predictions of different LMs so that they can create artificial examples. Towards
this direction, CBERT [37] exploits the Masked Language Modeling (MLM)
objective of BERT [12] and fine-tunes the model so that the masked tokens
are conditioned by the provided label. LAMBADA [1] utilizes GPT2 [28], a
generative LM, to create labeled examples after fine-tuning it on the training set
via label prompting. These examples are first filtered by a baseline classifier to
ensure that the predicted labels correspond to the one used to generate them,
before being used in the final training set. Similarly, a per-instance prompted
GPT2 model is presented in [3], to create similar texts which are then filtered
based on embedding distances.

Based on these approaches, [19] proposes a unified framework in which differ-
ent conditioning strategies are explored for BERT, GPT2, and BART [20] in a
low-resource scenario. In comparison to past approaches, no filtering is performed
due to the extremely low number of samples available for training. To counteract
the disadvantages of the early approaches, such as being task-specific or having
difficulty to create label-preserving examples, Polyjuice [36] aims to generate
texts with specific perturbations and substitutions. This is achieved through a
counterfactual sentence generation process rather than label conditioning used
in all other LM-based methods.

Several methods have also been proposed to augment the data in latent space,
rather than creating new examples. Specifically, Cutoff [31] creates noise in the
latent space by zeroing rows or columns of the input vectors, hence removing
tokens, features, or even spans of words, without the need to artificially cre-
ate examples. Building upon this, HiddenCut [9] uses Cutoff layers within the
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Transformer architecture blocks [34] of the entire model to introduce noise be-
tween layers, similarly to how dropout works [2]. Similarly, Mixup [15] proposes
a linear intepolation of textual samples from the same class to increase the input
signals received by the model with the same number of available data. Lastly,
CoDa [27] combines classic approaches, such as back-translation, with novel ap-
proaches, such as Cutoff and Mixup, as well as adversarial training to create
better models. A recent survey on DA methods for text classification analyzes
the aforementioned approaches in detail [3].

Previous approaches either fine-tune the respective LMs on the training data
or generate latent examples which are hard to benchmark and tied to datasets.
Consequently, we opt to focus on methods which can be evaluated with more
means than only through the performance changes in downstream tasks. In par-
ticular, prior to fine-tuning on the training data, we first fine-tune the LMs on
unlabeled in-domain data, to align the general language models with our effective
domain such that the artificially generated examples better match the domain’s
characteristics and can therefore lead to better overall performance.

3 Domain-aligned Data Augmentation

Our proposed method aims to utilize well-established pretrained LMs and a
collection of task-specific unlabeled data, to generate synthetic examples in order
to increase dataset size and eliminate imbalance. By initially fine-tuning the
pretrained LMs on in-domain data, we aim to generate better examples for the
task in hand and increase performance.

To that end, we build on top of [19] that uses three language models, BERT,
GPT2, and BART, which are autoencoding (AE), autoregressive (AR) and
sequence-to-sequence (seq2seq) LMs, respectively. These models are aligned with
the domain-specific data following their original training objectives (Section 3.1),
while the conditional generation is informed by the findings of [19] (Section 3.2).
Problem formulation. Let DTrain = {xi, yi}1n be a dataset for a task T con-
taining n examples, where xi = {wj}1m is an example in the dataset containing
m words and yi is the associated label of this example. And let DDomain = {xk}1v
be a dataset of v unlabeled examples, which can be easily acquired to match with
task T . We assume that v >> n with v being able to scale by acquiring more
unlabeled available data. Also, let G be a LM pretrained on generic data. This
work proposes GAligned being the G fine-tuned on DDomain and GAlignedTuned

being the fine-tuned GAligned LM on DTrain, while previous work has focused on
GTuned, i.e., pretrained LMs fine-tuned only on DTrain. Finally, DSynthetic is the
product of generating and adding s examples to DTrain using GAlignedTuned from
a dataset DSelect ⊆ DTrain containing only class examples under a threshold d
from DTrain.

Our goal is to train a task specific model M such that Score(MSynthetic) >
Score(MTrain) trained on DSynthetic and DTrain respectively and Score is a
task appropriate metric (e.g. Accuracy, F1-score, etc.). The process followed to
achieve this is described in Algorithm 1.
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Algorithm 1 Domain Aligned Data Augmentation
Input: Training dataset DTrain

In-domain unlabeled data DDomain

Pretrained model G
d: threshold number of examples per class
s: number of examples to be generated

1: Fine-tune G using DDomain to obtain GAligned

2: Fine-tune GAligned using DTrain to obtain GAlignedTuned

3: DSynthetic ← {}
4: DSelect ← ExampleSelector(DTrain, d)
5: foreach {xi, yi} ∈ DSelect do
6: Synthesize s examples {x̂i, ŷi}1s using GAlignedTuned

7: DSynthetic ← DSynthetic ∪ {x̂i, ŷi}1s
8: end foreach
9: DTask ← DTrain ∪DSynthetic

3.1 In-Domain Alignment

For the LM alignment, we fine-tune the pretrained LMs on DDomain using dif-
ferent training objectives to obtain GAligned. Specifically, we tune BERT using
only the MLM objective and discard the Next Sentence Prediction objective de-
scribed in [12], as it has shown to not contribute towards better performance
in downstream tasks [22]. GPT2 is tuned following the original objective, in an
autoregressive setting [28]. Lastly, BART uses the denoising objective described
in [20], following the same corruption strategies. For brevity, we do not describe
these objectives and methods in detail and refer readers to the cited works.

3.2 Conditional Generation

Using the previously acquired GAligned, we further fine-tune the LMs on DSelect

of each task so that we obtain GAlignedTuned which will be capable to condition-
ally generate new instances. Fine-tuning strategies for conditional generation
are also different for each individual model. For BERT, we follow the CBERT
approach [37], in which the model is first fine-tuned with a MLM objective with
the class as a single token sentence followed by a separator token and the original
text. After the model is tuned, random tokens from the original text are masked
and the model predicts replacements, altering the original text. For GPT2, we
follow [1] in which the class is also prepended to the original text followed by a
separator token and the model is trained autoregressively. Lastly, BART operates
similarly to CBERT with the label prepended to the start of the original text,
followed by a separator token [19]. For BART, we present results in two masking
strategies, word and span, due to performance variance based on masking [19].

Readers are encouraged to follow the original works for details on the con-
ditional generation process for each LM architecture. Conditional Generation is
dynamically used for both low-resource and imbalanced data through the ex-
ample selection threshold d. In the case of low-resource data, all labels are used
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simultaneously to obtain GAlignedTuned (i.e. DSelect = DTrain), while for im-
balanced data the model is trained only on the minority classes samples and
produces only examples for those classes (i.e. DSelect ⊆ DTrain).

3.3 Baseline Classifier

The task-specific model (M) is a BERT-based classifier, with a dropout layer
and a feed-forward layer with Softmax activation. Specifically, for each input
sequence, the latent representation of the [CLS] special token, which acts as a
sentence representation, is forwarded through the added layers to get the final
label prediction. We opt to use this as our baseline to closely match with previous
works [37,1,19]. All results presented in Section 5 are the effects of training this
model, with the same configuration, on different datasets.

4 Experimental Setting

4.1 Datasets

We evaluate the proposed approach using four classification datasets, two of
which belong to the same domain, namely Movie Reviews are examined in this
work, and two are out-of-domain, along with a single in-domain dataset which
we consider as unlabeled for domain alignment. The datasets used are:

- SST-2 [33] a binary sentiment classification dataset (positive and negative)
on movie reviews.

- RT [26] a binary sentiment classification dataset (positive and negative) on
long movie reviews.

- SNIPS [11] an intent classification dataset, identifying seven distinct intents
(PlayMusic, GetWeather, RateBook, SearchScreeningEvent, SearchCreative-
Work, AddToPlaylist, BookRestaurant).

- TREC [21] a question classification dataset identifying six question types
(Description, Entity, Abbreviation, Human, Location, Numeric).

Taking into account the classification datasets chosen for our experiments, we
use the IMDB dataset [24], i.e. a binary sentiment (positive and negative) clas-
sification dataset on movie reviews, as a Domain alignment corpus. As a result,
we consider SST-2 and RT as in-domain datasets and SNIPS and TREC as out-
of-domain datasets. We opted for standardized and simple datasets for our ex-
periments so that they are easy to replicate and focused on our objective, rather
than introducing multiple levels of complexity. Similarly, for SST-2, SNIPS and
TREC we use the same dataset versions as previous works [37,19], while for RT
we use the published version of the dataset.

Detailed statistics of the datasets used in this work are presented in Table 1.
Importantly, we note that all the datasets used in previous studies (i.e., SST-2,
SNIPS, and TREC) contain small examples, with a maximum of 52 words per ex-
ample across all datasets, while the RT and IMDB datasets we introduce contain
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Data
No. Examples

(train/dev/test)
Example Length
(max/min/mean)

SST-2 6228/692/1821 52/2/19.28
RT 1200/400/400 2737/17/765.75

SNIPS 13084/700/700 35/2/9.09
TREC 4906/546/500 37/3/10.21
IMDB 75000/0/25000 2470/10/233.77

Table 1. Data statistics for datasets used
in downstream tasks and alignment.

Dataset 10% 30% 50%

SS
T

-2 POS 324 972 1622
NEG 298 896 1494

R
T POS 62 184 310

NEG 67 189 315
Table 2. Number of instances of
the minority class after simulated
imbalance.

longer sequences, with RT being used for evaluation and IMDB for in-domain
alignment. Finally, the IMDB training set contains 50000 unlabeled examples,
with the number of labeled examples being equal between training and testing.

4.2 In-Domain Data Volumes

LM fine-tuning aims to align the model while avoiding catastrophic forgetting.
To fine-tune the three diverse LMs, the volume of data required and its effects in
downstream tasks varies. As such, we split the IMDB train set in three volumes,
Small, Medium, and Large of 18750, 37500, and 75000 examples, respectively,
representing the 25%, 50%, and 100% of the training data. The volumes contain
equal parts of positive, negative, and unlabeled examples.

4.3 Low resource and Imbalance Experiments

Simulating low resource. To align with previous work, we perform experi-
ments on both in-domain and out-of-domain datasets. In particular, similar to
[19], we create folds containing 10 examples of each class for all datasets. Specif-
ically, for SST-2, SNIPS, and TREC we create 15 folds by randomly sampling
examples, while for RT we use the provided 10 folds of the original dataset and
sub-sample the examples in those. For each fold, we double the training size by
creating 1 synthetic example (s = 1) for every original example (Algorithm 1).
Simulating imbalance. To evaluate the effects of our approach in different
imbalanced scenarios, we perform experiments only on the in-domain datasets,
given that this work focuses on in-domain alignment. In particular, to investigate
the effects on various degrees of imbalance, we create three imbalanced datasets
per class by sub-sampling each class of the training set for SST-2 and RT in
10%, 30% and 50% of all the class examples, while keeping the full number of
examples of the opposite class. For each sub-sampling class, we create 5 folds
through random example selection, to account with variance in the results. We
evaluate both doubling the minority class examples (s = 1) as well as balancing
the datasets (s = 9 for 10%, s = 3 for 30% and s = 1 for 50%), for each original
minority example. Table 2 reports the number of instances of the minority class
for each imbalance scenario.
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4.4 Experimental Setup

We use three pretrained LMs for in-domain alignment and conditional genera-
tion. Their configuration during in-domain alignment is described in Table 3. All
models were trained until convergence to the Small, Medium, and Large volumes
of in-domain data.

Parameters GPT2 BERT BART
Common Name “base” “base-uncased” “base”
Training Parameters 117M 110M 140M
Hidden Size 768 768 768
No Encoder/Decoder layers 12/0 0/12 6/6
No Attention Heads 12 12 12
Learning Rate 5e-6 5e-6 5e-6
Batch Size 64 64 32

Table 3. Language Model configuration for In-Domain Alignment.

For Conditional Generation in both Low-resource and Imbalance Setting, the
models use the following configurations. GPT2 is trained for 25 epochs with a
batch size of 32 and learning rate of 4e-5. Nucleus sampling is used for text
generation with top_p 0.9, top_k 0 and temperature 0 [16]. BERT is trained
for 10 epochs with a batch size of 8 and a learning rate of 4e-5. The masking
probability is set to 15% and the maximum number of masked tokens is 256 per
sequence. BART is trained for 30 epochs with a batch size of 12 and a learning
rate of 1e-5. Token masking rate in both word and span masking is 40%. The
number of examples generated depends on the experiment setting (Section 4.3)
and the threshold (d) is set so that it selects all classes in low-resource setting
and only the minority class in imbalanced setting.

Lastly, our Baseline classifier is using the bert-base-uncased configuration
(Table 3), trained for 8 epochs with a batch size of 8 and a learning rate of 4e-5.
In all experiments we use the Adam optimizer [18]. The codebase to reproduce
all the experiments is available on Github1.

5 Results

We consider two sets of results, for low-resource setting and for imbalance set-
ting. In each setting, we compare our baseline classifier’s performance trained
on data with no augmentation, augmented using pretrained LMs (Tuned) [19],
and augmented using domain-aligned LMs (AlignedTuned); the latter two double
the minority class size, i.e., consider s = 1. In the imbalance setting, Balanced
is further used to denote models which generate enough examples to balance

1 https://github.com/M4D-MKLab-ITI/Domain-aligned-Data-Augmentation

https://github.com/M4D-MKLab-ITI/Domain-aligned-Data-Augmentation
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the class instances, namely 9, 3, and 1 examples per minority class example, for
10%, 30%, and 50% imbalance, respectively (see also Section 4.3).

All results presented are product of re-implementation (including the results
from the Tuned methods) due to the degree of randomness in the example se-
lection process for the fold generation of the SST2, SNIPS, and TREC datasets.
Low-resource setting. In this setting, Table 4 presents the results with no
augmentation, the results with augmentation using pretrained LMs (Tuned),
and the results with augmentation using domain-aligned LMs (AlignedTuned)
by first listing per LM the best result among the three volume sizes, followed by
the results per LM for each volume size.

Model SST-2 RT TREC SNIPS
NoAug 52.817±4.174 55.5±6.5 43.506±11.364 85.714±2.794
GPT2Tuned 57.250±5.998 57.5±7.158 55.146±9.912 85.714±2.794
CBERTTuned 59.549±5.706 61.5±9.233 57.146±8.554 87.171±3.452
BARTwordTuned 59.205±4.168 60.5±7.566 58.786±6.193 85.476±3.198
BARTspanTuned 59.769±3.976 61.5±7.762 57.386±8.599 87.074±2.835
GPT2AlignedTuned 58.290±5.071 59.0±6.244 57.426±4.768 87.019±3.163
CBERTAlignedTuned 60.505±6.137 65.5±7.889 59.986±8.107 87.847±2.128
BARTwordAlignedTuned 60.464±4.628 64.0±12.806 56.040±8.208 85.876±2.719
BARTspanAlignedTuned 58.528±4.198 65.0±7.416 55.200±8.304 85.477±2.680

Small Volume
GPT2AlignedTuned 57.744±5.262 58.0±6.403 54.666±8.514 85.809±2.885
CBERTAlignedTuned 60.505±6.137 63.0±9.797 59.986±8.107 87.847±2.128
BARTwordAlignedTuned 58.586±5.085 64.0±12.806 56.040±8.208 85.876±3.676
BARTspanAlignedTuned 58.528±4.198 64.0±9.695 55.200±8.304 85.477±2.680

Medium Volume
GPT2AlignedTuned 58.290±5.071 59.0±6.244 55.133±7.838 86.828 ±2.872
CBERTAlignedTuned 60.505±6.137 63.0±9.797 59.986±8.107 87.847±2.128
BARTwordAlignedTuned 60.464±4.628 61.5±11.191 55.093±10.711 85.847±2.719
BARTspanAlignedTuned 58.455±4.493 63.5±7.762 50.386±10.832 84.057±3.553

Large Volume
GPT2AlignedTuned 57.426±4.768 59.0±8.306 57.426±4.768 87.019±3.163
CBERTAlignedTuned 58.056±5.765 65.5±7.889 58.866±8.161 87.647±2.360
BARTwordAlignedTuned 60.464±4.628 61.5±11.191 53.306±10.421 84.561±3.465
BARTspanAlignedTuned 58.191±4.034 65.0 ±7.416 49.933±8.806 85.028±2.585

Table 4. Low-resource classifier performance with in-domain aligned models. Bold
scores are the best score per model per dataset. Underlined scores indicate improvement
over lower volume alignment and non-augmented scores per model per dataset. Bold &
underlined scores are best scores per dataset.

For in-domain evaluation, we notice that, on SST-2 and RT, the classifier
achieves overall better performance when trained on examples created from
domain-aligned LMs. Comparing the best performing aligned model with their
non-aligned counterpart, statistical significant performance increase (p < 0.05)
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is achieved in all experiments on the RT dataset2 and we see a noticeable but
not significant increase on SST-2 (p ≈ 0.20). As an exception, the aligned BART
with span masking on the SST-2 dataset exhibits a loss in overall Accuracy. This
comes in line with the findings of [19], where different BART masking strategies
perform better in different datasets. In out-of-domain evaluation, on TREC and
SNIPS, the results reveal increase in Accuracy, but no statistically important,
when the examples are generated from GPT2 and CBERT, while aligned BART
generated examples generally appear to have an opposite effect.

Examining the performance of the domain-aligned LMs further, with respect
to the volume sizes, we notice that in-domain performance tends to increase
with volume size, before it slightly drops. However, even the degraded scores are
overall better than the ones achieved by the non-aligned LM generated examples.
In out-of-domain datasets, we notice a performance drop, proportional to the
level of alignment of the LMs with the task in hand; exceptions rise in the form
of CBERT and GPT2 where we notice an increase in mean Accuracy when
aligned on Small and Large volumes respectively.

Imbalance setting. For imbalanced evaluation, we test three different levels
of imbalance with F1-score using, for the synthetic data generation, the best
aligned LMs in terms of data volume from each LM type (see Table 4 for the
best performing AlignedTuned LMs). We opt to use F1-score, as Accuracy is
plagued with majority class bias and hence inherently flawed in this setting
[7,23]. We compare the classifier’s performance with examples generated from
the aligned LMs to that with examples generated from pretrained LMs, as well
as without any augmentation.

SST-2

Model Pos Neg Pos Neg Pos Neg
10% 10% 30% 30% 50% 50%

NoAug 82.65±0 33.30±0 89.24±0 86.63±0 90.14±0 89.97±0
GPT2Tuned 77.64±3.5 56.41±12.1 88.06±1.0 83.06±1.9 89.36±1.1 87.61±5.0
GPT2AlignedTuned 78.81±2.8* 58.63±5.1* 88.56±0.5 83.53±1.6 89.57±0.5 88.37±0.2*
GPT2TunedBalanced 57.82±1.0 54.72±1.3 75.13±2.4 72.58±2.2 89.36±1.1 87.61±5.0
GPT2AlignedTunedBalanced 58.24±1.3 55.03±1.1 76.26±2.1* 73.31±1.9 89.57±0.5 88.37±0.2*
CBERTTuned 87.48±0.6 77.23±1.6 90.5±0.6 88.32±0.7 91.03±0.2 90.29±0.6
CBERTAlignedTuned 87.99±0.7 78.64±0.9* 90.52±0.2 88.72±0.7* 91.4±0.2 90.58±0.4*
CBERTTunedBalanced 84.64±1.2 76.34±2.7 90.11±0.4 87.68±0.6 91.03±0.2 90.29±0.6
CBERTAlignedTunedBalanced 85.12±0.6 77.95±1.2* 90.26±0.4 88.70±0.3* 91.4±0.2 90.58±0.4*
BARTTuned 82.68±3.0 77.63±2.4 89.79±0.5 86.77±1.2 90.79±0.4 89.22±0.4
BARTAlignedTuned 84.56±1.4* 78.10±1.3* 90.10±0.3* 87.11±0.1* 91.12±0.3 89.47±0.5
BARTTunedBalanced 83.5±0.7 77.14±1.2 89.78±0.8 88.40±0.7 90.79±0.4 89.22±0.4
BARTAlignedTunedBalanced 84.32±1.0 77.70±1.0 89.88±0.2 88.60±0.6 91.12±0.3 89.47±0.5

Table 5. F1-score score of imbalanced setting with artificial imbalance in Positive
(Pos) or Negative (Neg) label for the SST-2 dataset. Bold scores are the best score
per model per dataset. Bold & underlined scores are best scores per dataset. Statistical
significant improvement (p < 0.05) over non-alinged counterparts is shown with *.

2 BARTwordAligned has a p < 0.06 due to high STD.
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Starting with SST-2 (Table 5), we note that the aligned models performed
better than their non-aligned counterparts in all settings, with better F1-score
and lower standard deviation among folds. However, not all improvements are
statistically important, with all GPT2 models failing to improve over baseline
results. In addition, performance tends to degrade when artificially balancing
the instances with all models.

Interestingly, statistical significant improvements are mostly noted when the
Negative class is the subservient one, which maintains lower scores in all settings
than with a Positive subservient class. These results verify an inherit difficulty in
predicting negative examples due to high average mutual information between
class examples, pointing to high similarity between same class texts, the use
of sarcasm which portraits them as positive texts, and noise due to mislabeled
examples [10].

RT

Model Pos Neg Pos Neg Pos Neg
10% 10% 30% 30% 50% 50%

NoAug 33.33±0 33.33±0 73.29±2.2 33.33±0 83.85±0 64.06±0
GPT2Tuned 33.33±0 33.33±0 34.52±1.8 39.67±14.5 80.51±3.6 71.21±16.23
GPT2AlignedTuned 33.33±0 33.33±0 42.00±8.3* 45.12±12.6* 81.31±5.2 78.56±6.5*
GPT2TunedBalanced 59.95±5.6 62.10±5.4 80.06±2.9 70.03±13.8 80.51±3.6 71.21±16.23
GPT2AlignedTunedBalanced 61.21±11.1* 63.25±3.5* 81.11±1.1 78.09±3.7* 81.31±5.2 78.56±6.5*
CBERTTuned 33.33±0 33.33±0 70.74±20.0 57.04±20.9 72.17±19.5 76.22±19.4
CBERTAlignedTuned 33.33±0 33.33±0 75.60±11.8* 58.92±20.9* 84.41±0.9* 82.35±3.5*
CBERTTunedBalanced 74.92±4.5 65.59±6.4 82.39±2.2 73.39±3.3 72.17±19.5 76.22±19.4
CBERTAlignedTunedBalanced 76.19±3.0* 68.69±4.2* 84.18±1.2* 74.38±2.9* 84.41±0.9* 82.35±3.5*
BARTTuned 33.33±0 33.33±0 39.28±11.9 50.38±21.1 37.38±20.0 83.37±2.5
BARTAlignedTuned 33.33±0 33.33±0 39.50±11.8 57.47±18.8* 83.39±0.5* 84.47±2.4*
BARTTunedBalanced 61.82±13.0 55.69±6.9 80.60±3.2 73.84±20.3 37.38±20.0 83.37±2.5
BARTAlignedTunedBalanced 62.32±9.5* 66.11±6.2* 81.72±3.3 81.74±4.4* 83.39±0.5* 84.47±2.4*

Table 6. F1-score of imbalanced setting with artificial imbalance in Positive (Pos) or
Negative (Neg) label for the RT dataset. Bold scores are the best score per model per
dataset. Bold & underlined scores are best scores per dataset. Statistical significant
improvement (p < 0.05) over non-alinged counterparts is shown with *.

In RT (Table 6), the performance advantage between Positive and Negative
subservient class datasets is more equally divided, depending on the augmenta-
tion approach. In addition, in this longer text dataset the alignment gains are
more pronounced with almost all aligned models achieving statistically signifi-
cant improvement over their non aligned counterparts. More importantly, when
the subservient class becomes balanced, we notice dramatic improvement in per-
formance compared to just doubling the minority class examples.

Specifically, we note that in all the 10% imbalance cases on RT, the aug-
mentation proved ineffective when doubling the subservient class examples and
the classifier failed to predict the minority class. In comparison, the balanced
counterparts almost double the performance in the 10% and 30% imbalance set-
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tings. This jump in performance is attributed both to the extra examples and the
quality of the generated examples, which are longer and allow for more diversity.

Overall, balancing the minority class showcases very different behavior in
SST-2 and RT, with the first degrading and the second improving. This is at-
tributed to both the size of the datasets, where the subservient class at 50%
imbalance of RT has the same number of instances as the subservient class at
10% imbalance of SST-2, and their characteristics, i.e., short and long texts that
grant different levels of generation freedom to the models. We intrinsically no-
tice less diverse generated examples for SST-2 balancing, which led to overfitting
issues of the characterstics of the generated examples. In RT, this phenomenon
is universally less pronounced, leading to the increase in performance.

6 Discussion

Overall, we show that in-domain alignment can have a positive effect in example
generation when the labeled set of training data for a certain classification task
is either very small or characterized by imbalance.

In particular, we observe that in low-resource settings, using only a small
amount of labeled data, we can generate synthetic examples for all classes, boost-
ing the performance of the text classifier. Furthermore, by only creating synthetic
examples of the minority classes in imbalanced scenarios, we significantly help
improve the performance, especially in the case of RT. Importantly, the exper-
imental results showcase even when balancing the dataset, synthetic examples
are not a replacement for real examples, but they can lead to significantly better
performance. We further found that generating more than one synthetic example
from each training example, longer sequences allowed for higher degree of free-
dom to the model, which translated into improved performance. Short texts on
the other hand exhibited the opposite effect, with repeated synthetic examples.

In addition, by studying the effects of unlabeled data volume in the down-
stream tasks, we notice that different LM architectures operate best under dif-
ferent data volumes. A correlation between the number of training parameters
of the LM and the volume of data exists, with CBERT operating better in the
Small and Medium ranges, while also having the best lowest parameter count,
GPT2 performing best in the Medium range, and BART performing best in the
Medium and Large ranges.

This fluctuation in volume sizes of the same LM architecture is attributed
to the different characteristics of the in-domain datasets. RT is characterized by
considerably larger sequences than SST-2 and we dynamically select the number
of tokens to be replaced or generated depending on the architecture. Hence, the
longer the sequence, the more predictions are required by the LM and the harder
it becomes to generate quality examples.

In terms of out-of-domain evaluation, performance generally degrades pro-
portionally to the level of LM alignment. While this is expected, it is important
to highlight it, as it limits the usability of the aligned LMs in other tasks. Over-
all, GPT2 appears to handle best out-of-domain tasks, which can be attributed
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to its autoregressive nature, while both other models replace only parts of the
original examples through masking predictions.

However, in imbalanced settings and especially on the RT dataset we find
that model performance varies depending on the class examples to be generated
and the quantity of available training data. With positive examples as the mi-
nority class, performance is overall better in all models, with the exception of
GPT2 which excels in generating negative examples on the RT dataset. As the
same behavior is exhibited in both aligned and non-aligned models, it cannot
be attributed to the alignment dataset, but can be attributed to the models’
characteristics.

Overall, the aligned models improved over their non-aligned counter parts in
both low-resource and imbalanced settings with mask-based augmentation mod-
els (i.e, BERT and BART) performed better than their generative counterpart
(i.e., GPT2). However, examples generated from GPT2 were more diverse and
different generation strategies can significantly impact performance.

7 Conclusions and Future Work

Current Data Augmentation approaches focus on either very specific augmenta-
tion techniques which are hard to transfer to other tasks or generic approaches
to filter large quantities of automatically created examples. We propose the use
of in-domain alignment for LM-based Data Augmentation in low-resource and
imbalance Text Classification tasks.

By aligning the model, better synthetic examples are generated that can
boost the performance of the in-domain tasks. We also find a positive correlation
between volume of unlabeled data for in-domain alignment and downstream
performance, as well as identify performance degrading point which can inform
future applications.

While our approach creates better examples, generating a plethora of exam-
ples from a single example is non-trivial, as evident by our experimental results
when balancing imbalanced datasets. Improving the text generation process so
that it better scales to the generation of more examples, while remaining invari-
ant to text characteristics, remains a future work. Besides the creation of better
examples from LMs, our approach can be bootstrapped to semi-supervised or
active learning approaches, following other works, that can help filter out gen-
erated examples and increase the performance further.
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