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Abstract

Time-series models typically assume untainted and legitimate streams of data. However,
a self-interested adversary may have incentive to corrupt this data, thereby altering a
decision maker’s inference. Within the broader field of adversarial machine learning,
this research provides a novel, probabilistic perspective toward the manipulation of
hidden Markov model inferences via corrupted data. In particular, we provision a suite
of corruption problems for filtering, smoothing, and decoding inferences leveraging an
adversarial risk analysis approach. Multiple stochastic programming models are set forth
that incorporate realistic uncertainties and varied attacker objectives. Three general
solution methods are developed by alternatively viewing the problem from frequentist
and Bayesian perspectives. The efficacy of each method is illustrated via extensive,
empirical testing. The developed methods are characterized by their solution quality and
computational effort, resulting in a stratification of techniques across varying problem-
instance architectures. This research highlights the weaknesses of hidden Markov models
under adversarial activity, thereby motivating the need for robustification techniques to
ensure their security.

Keywords: Adversarial Risk Analysis, Hidden Markov Models, Adversarial Machine
Learning

1. Introduction

Hidden Markov models (HMMs) are stochastic processes over some time interval T
which assume that an observed sequence of outputs, txtutPT , is a noisy observation from
an underlying unobservable (hidden) sequence of states, tqtutPT , that is, in turn, generated
by a Markov chain, tQtutPT . In canonical HMMs, the state evolution model is a discrete-
time, discrete-state, first-order Markov chain such that T “ t1, 2, . . . , |T |u and Qt P

Q “ t1, . . . , |Q|u. Transitions between Qt and Qt`1 are governed by the state-transition
probability matrix A having elements aij “ P pQt`1 “ j|Qt “ iq,@pi, jq P Q ˆ Q, and
initial-state probabilities are given by πi “ P pQ1 “ iq,@i P Q. Furthermore, each
observation Xt P X “ t1, . . . |X |u is determined by the observation probability matrix B
having elements bik “ P pXt “ k|Qt “ iq, @pi, kq P Q ˆ X . Figure 1 graphically depicts
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this standard model; the nodes and arcs represent random variables and conditional
dependencies, respectively.

Q1 Q2 Q3 ... Q|T |

X1 X2 X3 ... X|T |

Figure 1: A basic hidden Markov model

Despite their relative simplicity, HMMs can be leveraged to perform a wide array
of inferences and predictions. Rabiner (1989) discusses three commonly considered
problems: (1) identifying the likelihood P ptXtutPT q for a given HMM parameterization,
(2) selecting the most likely sequence of latent states given an HMM model and a
sequence of observations, i.e., decoding, and (3) learning to optimally parameterize,
through maximum likelihood estimation, an HMM given a sequence of observations
(e.g., estimating A and B). In addition to these standard problems, researchers and
practitioners are also often interested in the probability of a specific hidden state
at some time t. That is, given a sequence of observations, one may wish to infer
P pQ|T | “ i|tXτuτPT “ txτuτPT q and P pQt “ i|tXτuτPT “ txτuτPT q for t ă |T |. These
inferences are also known as filtering and smoothing, respectively. Bayesian approaches to
HMMs (e.g., see Scott, 2002) also draw upon these building blocks, but vary mechanically
based upon their alternative perspective. Moreover, whereas inference may be performed
sequentially, HMMs often consider inference on batch data, i.e., using complete sequences
of observations.

The utility of such predictions and inferences has been illustrated in myriad appli-
cations and diverse disciplines. From gesture recognition in computer science (Starner
and Pentland, 1997) and chromatin state learning in computational biology (Ernst and
Kellis, 2012) to stochastic thermodynamics in physics (Bechhoefer, 2015) and signal
processing in electrical engineering (Crouse et al., 1998), HMMs have proven themselves
to effectively characterize unobservable states based upon another related, observable
process. Of such applications, speech recognition is, perhaps, the most successful and
widely known historical use of HMMs (Gales et al., 2008) dating back to the canonical
works summarized by Rabiner (1989). Security applications are also relevant including
network intrusion detection (Scott, 2002) and spam detection (Gordillo and Conde,
2007).

Such successful applications drive increased incorporation of HMMs into commercial
products and, as discussed by Biggio and Roli (2018), this increased utilization is
accompanied by a wide array of security threats. More specifically, if an automated
system utilizes a machine learning algorithm, a nefarious actor may attempt to subvert
the system by manipulating its underlying statistical framework (e.g., by providing it
corrupted data). The field of adversarial machine learning (AML) focuses on modeling
these threats from both an offensive and a defensive perspective, i.e., modeling how the
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attacks affect the algorithm and how to defend against the associated negative effects.
Although AML is a relatively nascent field, much progress has been made in the last
fifteen years since Dalvi et al. (2004) published the discipline’s seminal work regarding
adversarial classification. As a result of deep learning’s recent widespread adoption in
commercial products, neural networks have received substantial interest in the AML
literature (Melis et al., 2017; Crecchi et al., 2020; Sotgiu et al., 2020), with support
vector machines likely being a close second (Xiao et al., 2015; Indyk and Zabarankin,
2019; Alhajjar et al., 2021). Although classification and computer vision remain the
predominant focus of AML research, other machine learning tasks have been emphasized
in more recent investigations (e.g., see Jagielski et al., 2018; Caballero et al., 2021;
Gallego et al., 2019). In particular, adversarial machine learning algorithms relating to
temporal data and unsupervised learning are emerging areas of inquiry (e.g., see Alfeld
et al., 2016; Chen and Zhu, 2020; Dang-Nhu et al., 2020; Naveiro, 2021; Hsu et al., 2021).

However, given the shear breadth and variety of available machine learning methods
and variations, many techniques have been sparingly studied (if at all) from an AML per-
spective. HMMs are one such understudied technique of particular relevance (Caballero
et al., 2020). Real-world application of the attacks abound, ranging from SMS spam
misclassification (Xia and Chen, 2020) and target detection (Miller et al., 2015) to crisis
prediction in international politics (O’Brien, 2010). Therefore, to address this gap in the
literature, we develop herein multiple algorithmic methodologies that can be leveraged
to corrupt HMM data such that the resulting inference is erroneous and benefits the
interests of a nefarious actor. The development of such attacks is paramount to ensure
the security of canonical HMM algorithms when the veracity of the underlying data is
threatened; their weaknesses must first be identified before they can be strengthened.

This manuscript makes two primary contributions. Firstly, we provide a compre-
hensive collection of HMM corruption problems that encompass filtering, smoothing,
and decoding inferences under realistic uncertainty conditions. Secondly, we develop
and benchmark a set of attack frameworks that can be tailored to specific scenarios.
Through extensive empirical testing, we demonstrate the effectiveness of our attacks
and highlight the trade-off between solution quality and computational effort when
corrupting larger-scale HMMs. In so doing, our research explores the limits of the
developed frameworks, providing insight into their capabilities.

The organization for the remainder of this manuscript is as follows. We begin in
Section 2 by providing requisite background on HMM inferences and our opponent
modeling framework (i.e., adversarial risk analysis, Banks et al. (2015)). Subsequently,
Section 3 formally defines a collection of HMM corruption problems for use against
filtering, smoothing, and decoding inferences. Not only are the resultant mathematical
programs non-linear and combinatorial in nature, but they are also characterized by
uncertain parameters. Therefore, the considered models are stochastic programming
problems for which most traditional solution techniques are unsuitable. Therefore, in
Section 4, we set forth three approximation methods that enable the attacker to tractably
identify high-quality solutions. These solution techniques are tested in Section 5 via a
designed experiment over a subset of tunable, algorithmic parameters. The practical
relevance of our methods is also illustrated via a case study whereby an HMM used for
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part-of-speech tagging is attacked. Finally, we conclude this manuscript in Section 6
by providing closing remarks and presenting promising avenues of future research. The
appendix provides implementation details of the computational algorithms.

2. Relevant, Contextual Background

This manuscript is multi-disciplinary in nature, integrating machine-learning and
decision-analytic techniques within a competitive stochastic process. To ensure com-
prehension by a broad readership, this section briefly summarizes relevant background
material regarding HMMs and adversarial risk analysis (ARA).

2.1. Inference and Prediction on Hidden Markov Models

HMMs, such as that provided in Figure 1, are probabilistic graphical models utilized
in myriad applications. Akin to other graphical models (e.g., Bayesian networks), it is
often of interest to update probabilities in the HMM by conditioning upon a subset of
known variables. Given that Qt is unobservable, such updates are performed in an HMM
assuming some set of observed txtutPT . Provided this batch of observations, filtering,
smoothing, and decoding are among the most frequently solved problems1.

Algorithm 1 Forward Algorithm

for i P Q do
α1,i “ πibi,x1

end for
for τ “ 2, . . . , t and i P Q do
ατ,i “

ř

jPQ ατ´1,jaj,ibi,xτ

end for

The filtering and smoothing problems can each be solved utilizing the Forward and
Backward algorithms summarized in Algorithms 1 and 2. In the case of filtering, only
Algorithm 1 must be utilized to identify the forward probabilities, i.e.

αt,i “ P
`

Qt “ i, tXτutτ“1 “ txτutτ“1

˘

.

Once identified, it can be shown that

P pQ|T | “ i|tXτuτPT “ txτuτPT q “
α|T |,i

ř

jPQ α|T |,j
.

Alternatively, for smoothing problems, the time of interest is some t ă |T |, implying
that both the forward and backward algorithms must be leveraged. Once the backward
probabilities, i.e.,

1The learning problem, i.e., fitting the most-likely HMM parameters given a set of observations, is
another common HMM problem but not one that we address herein. We refer the interested reader to
Rabiner (1989) for more information in this regard.
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Algorithm 2 Backward Algorithm

1: for i P Q do
2: β|T |,i “ 1
3: end for
4: for τ “ |T | ´ 1, . . . , t and i P Q do
5: βτ,i “

ř

jPQ βt`1,jai,jbj,xτ`1

6: end for

βt,i “ P ptXτu
|T |

τ“t`1 “ txτu
|T |

τ“t`1|Qt “ iq.

are identified via Algorithm 2, it is known that

P pQt “ i|tXτuτPT “ txτuτPT q “
αt,iβt,i

ř

jPQ αt,jβt,j
. (1)

Decoding problems, for their part, are typically addressed via application of the
Viterbi algorithm summarized in Algorithm 3. Given some txtutPT , this algorithm
functions by successively identifying the probability of the most likely latent-state path
to Qt “ i, @t P T , i P Q. These are referred to as Viterbi probabilities and denoted
by δt,i. By storing the backtraces, i.e., ψt,i, the most likely sequences of states can be
reconstructed by identifying q˚

|T |
“ argmaxiPQ δ|T |,i and tracing the corresponding chain

of ψt,i-values back to t “ 1.

Algorithm 3 Viterbi Algorithm

for i P Q do
Set δ1,i “ πibi,x1 and ψ1,i “ 0
end for
for t “ 2, . . . , |T | and i P Q do
δt,i “ maxjPQ δt´1,jaj,ibi,xt

ψt,i “ argmaxjPQ δt´1,jaj,i
end for
Set q˚

|T |
“ argmaxiPQ δ|T |,i

Set q˚
t “ ψt`1,q˚

t`1
for t “ |T | ´ 1, ..., 1

2.2. Adversarial Risk Analysis

ARA is a Bayesian alternative to game-theoretic analysis of a competitive interaction.
Whereas game theory solves every player’s problem simultaneously in a given solution
concept, ARA approaches the problem from a decision-theoretic perspective. That
is, ARA extends canonical, decision-analytic methods to competitive interactions, by
enabling a supported player to maximize their expected utility under aleatory, epistemic,
and solution-concept uncertainties. Within this research, we adopt the ARA perspective
toward opponent modeling to decompose the game into a decision problem for the
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attacker. This is in juxtaposition to a game-theoretic approach that solves the game as
a system to identify all possible equilibrium profiles.

The ARA approach to a competitive interaction can be visualized via the bi-agent
influence diagrams (BAID) in Figure 2a and the corresponding ARA reduction in Figure
2b. Squares represent decision nodes for the corresponding players (i.e, D or Z), circles
represent uncertainty nodes, and hexagons are utility nodes. A white fill corresponds to
Player-D nodes and a gray fill to Player-Z nodes; shared nodes are depicted with striped
white-and-gray fill. Figure 2a represents an arbitrary, sequential game. The dashed
informational arc between the decision nodes indicates that Player D takes an action
after having observed Player Z’s choice. Both player’s utilities are, in turn, affected
by the players’ joint action profile and the outcome of the uncertainty X. For more
information on BAIDs, we refer the interested reader to Koller and Milch (2003).

XD Z

uD uZ

(a) Arbitrary, Sequential Game

XD Z

uD uZ

(b) Player Z’s Reduction

Figure 2: A Visualization of the ARA Approach in a Sequential Game

Figure 2b illustrates how an ARA analysis decomposes this competitive interaction.
Namely, assuming the ARA is supporting Player Z, Player D is treated as, simply put,
another source of uncertainty. Whereas a multitude of opponent models may be leveraged
within the ARA framework (Albrecht and Stone, 2018), most research adopts a recursive
reasoning approach. This implies that a corresponding ARA reduction is constructed
and solved from Player D’s perspective; however, due to Player Z’s uncertainty about
their opponents beliefs, multiple instantiations of this reduction are solved to construct
an empirical, probability distribution over Player D’s actions. Once this distribution over
Player D’s actions has been identified, solving Player Z’s problem can be accomplished
via standard decision-analytic practices. Alternatively, Banks et al. (2011) illustrated
how, under low information conditions, zeroth-order ARA allows for the direct elicitation
of beliefs on the opponent’s behavior.

Due to its generality, ARA can be applied to any competitive setting. A plurality of
the ARA literature focuses on its application to physical security settings, e.g., counter-
terrorism and military operations. However, recent research highlights its promise for
adversarial machine learning as well (e.g., see Naveiro et al., 2019; Rios Insua et al., 2023;
González-Ortega et al., 2021). Canonical AML techniques are rooted in game-theoretic
analysis, and inherit the associated common knowledge assumption. An ARA approach
allows one to loosen this assumption when it is inappropriate, e.g., for the security
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settings considered herein.

3. Hidden Markov Model Corruption Problems

We consider herein an attacker, i.e., Player Z, attempting to thwart inference
conducted on a HMM by a decision maker, i.e., Player D. Given that many HMM-
inference techniques utilize batch data, i.e., a full observation sequence txtutPT , we assume
the attacker seeks to modify this information so that, when utilized by the decision
maker, the resulting inference somehow benefits Player Z. Whereas the attacker knows
the decision maker is utilizing an HMM, they are uncertain of its exact parameterization
(i.e., in the terms of Biggio and Roli (2018), we consider a grey-box setting) and describe
their beliefs probabilistically in a Bayesian manner. Moreover, the attacker’s attempts at
data corruption are subject to error and are not guaranteed to be successful. Corruption
attacks are also accompanied by an associated risk of discovery, implying that Player
Z must balance the risks and rewards of their attacks. For this initial research, the
decision maker is assumed to utilize the standard HMM inference procedures discussed
in Section 2; that is, as with many HMM applications currently in use, Player D has
not hardened their algorithms against potential attacks.

Figure 3a provides a BAID which graphically depicts this interaction2. Akin to
the real-world scenarios discussed by Krasser (2023), the attacker is assumed to have
either infiltrated the decision maker’s information system or controls the input data.
They desire to use this access, along with intelligence about the form of Q and X , to
manipulate inference while maintaining data plausibility. The series of true latent states,
tQtutPT , is unknown to each player; however, it affects the observations, txtutPT . Player
Z is able to first view this information and, in accordance with their own self interest,
attempt to corrupt it by altering observations. That is, if it will maximize their expected
utility, Player Z may attempt to change a set of xt-variables but, because these attacks
are subject to error, the attack may not be entirely successful. Via Player Z’s interaction
with txtutPT , a new, potentially perturbed series of observations, tytutPT is utilized by
the decision maker (i.e., Player D) as the basis of their inference. Such attacks are
particularly relevant when the environment and the sensors determine the emissions and
latent variables (e.g., quality control or fault identification on assembly lines).

Should Player Z have perfect knowledge about the HMM parameterization, then
the resulting HMM corruption problem would be deterministic from the attacker’s
perspective. Herein, we adopt an alternative approach that we contend is more realistic.
Namely, an attacker can quite readily ascertain via nefarious means the class of machine
learning algorithm utilized in application by a decision maker, but discovering its exact
parameterization is a more difficult task. According to such uncertainties, Figure
3b presents an ARA reduction of the previously described BAID from the attacker’s
perspective. Player Z’s beliefs about the decision maker’s parameterization (i.e., ai,j ,
bi,k, and πi) are encapsulated by the uncertainty node on Player D’s decision.

2In select problem variants (e.g., distribution disruption), a functional arc between tXtu and uZ may
need to be considered. We discuss such problems subsequently.
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tQtuD Z

tXtu

tYtu

uD uZ

(a) BAID for the HMM Corruption Problem

tQtuD Z

tXtu

tYtu

uZ

(b) Attacker Reduction of the HMM Corruption Problem

Figure 3: HMM Corruption Problem

Although Figure 3b provides an intuitive graphical means of depicting the attacker’s
problem, further notation is required to set forth an authoritative formulation. Table 1
details the additional notation leveraged within this section to do so. Therein, variable
indices are represented at their finest level of granularity; however, hereafter, arrays of
decision variables are denoted via the absence of a subscript (e.g., zt contains zt,k over
every k P X ). The same convention is used for the probability matrices, e.g., row i of A
is denoted as ai “ pai,1, . . . , ai,|Q|q.

Table 1: Summary of Additional Notation for HMM Corruption Problems

Notation Definition

uZp¨q Player Z’s utility for a given set of decision variables and realized uncertainties

zt,k Binary decision variable equal to 1 if attacker inserts k at t, and 0 otherwise

w1 Attacker’s objective-function weight on decision maker’s inference

w2 Attacker’s objective-function weight on data corruption costs

ρt,k Random variable equaling 1 if insertion of k at t is successful, and 0 otherwise

yt Perturbed observation at t viewed by decision maker

αt,i Standard forward probabilities calculated with tytutPT

βt,i Standard backward probabilities calculated with tytutPT

δt,i Standard Viterbi probabilities calculated with tytutPT

Pρ Joint probability mass function of ρ-variables having support P
gA Joint density over entries in A having support A
gB Joint density over entries in B having support B
gπ Dirichlet density over entries in π having support Π

gω Joint density over all random variables having support Ω
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3.1. Corrupting Filtering and Smoothing Inference

The attacker’s problem described previously is simultaneously stochastic, combinato-
rial, and nonlinear. These characteristics are therefore present in Problem P1 which
represents an attacker with general, multi-objective utility over the corruption of a
decision maker’s filtering or smoothing distributions at time t1. When encountered with
such a problem, the attacker should solve

P1 : max
z

uZpz, αt1 , βt1 q “ E rw1f1pαt1 , βt1 q ´ w2f2pzqs

s.t.
ÿ

kPX
zt,k “ 1, @t P T , (2a)

α1,i “ πi

˜

ÿ

kPX
z1,kpbi,kρ1,k ` bi,x1p1 ´ ρ1,kqq

¸

, @i P Q, (2b)

αt,i “
ÿ

jPQ
αt´1,jaj,i

˜

ÿ

kPX
zt,kpbi,kρt,k ` bi,xtp1 ´ ρt,kqq

¸

, @t P T zt1u, i P Q, (2c)

β|T |,i “ 1, @i P Q, (2d)

βt´1,i “
ÿ

jPQ
βt,jai,j

˜

ÿ

kPX
zt,kpbj,kρt,k ` bj,xtp1 ´ ρt,kqq

¸

, @t P T zt1u, i P Q, (2e)

such that

ρt,k „ Bpλkq,@t P T , k P X ,
ai „ Dpξiq,@i P Q,
bi „ Dpζiq,@i P Q,
π „ Dpυq,

where Bp¨q and Dp¨q are shorthand for the Bernoulli and Dirichlet distributions charac-
terized by the provided parameters. We note that attack success, i.e., ρt,k, is stationary
across t but may vary in k. Similarly, uncertainty over the transition and emission
probabilities may vary in i. For notational convenience, the joint probability mass
function of all ρ-variables is denoted by Pρ over support P, the joint density of the
transition matrix rows is gA with support A, the joint density of the emission matrix
rows is gB with support B, and the Dirichlet distribution over π is denoted by gπ with
support Π. The joint density of all random variables is denoted by gω with support
Ω “ P ˆ A ˆ B ˆ Π.

The objective function of Problem P1 is the expected value of a linear combination of
f1pαt1 , βt1q and f2pzq whereby the former captures the attacker’s utility from the decision
maker’s inference and the latter represents the utility associated with their corruption
decisions. That is, the weighted-sum method from multicriteria optimization is leveraged
(Ehrgott, 2005). Constraint (2a) ensures that the attacker only selects a single k P X
to insert into the perturbed observation vector at each time. Note that, if xt “ k and
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zt,k “ 1, the attacker is not altering xt and yt “ k with certainty, i.e., this observation is
not being changed. Alternatively, Constraints (2b)–(2e) ensure the correct calculation
of both the forward and backward probability recursions. Although visually distinct,
these constraints are conceptually similar to the equations provided in Section 2.1. The
summand in (2b)–(2e) over k P X , ensures that the forward (backward) probabilities
are calculated correctly with the realized tytutPT . Moreover, provided a realized set of
attack-success outcomes (i.e., ρt,k), this sequence of perturbed observations can readily
be calculated via

yt “
ÿ

k1PX
zt,k1

`

ρt,k1k1 ` p1 ´ ρt,k1qxt
˘

, @t P T .

From inspecting Problem P1, its difficulty becomes immediately apparent. By
expanding the recursions in Constraint (2c) and (2e), it can be observed that the
resulting functions are nonlinear for any non-trivial T ; both the forward and backward
probabilities expand to, potentially, high-order polynomial functions. Adding further
complexity is the fact that all of the parameters in Constraints (2b)–(2e) are unknown
and subject to probabilistic uncertainty. Furthermore, whereas Constraint (2a) is
deterministic and linear, it highlights the combinatorial nature of the attacker’s problem.
This complexity may be further exacerbated by the specific functional form of the
attacker’s multi-objective utility function.

Herein, we explore a subset of the most interesting utility functions. Multitudinous
options exist to parameterize the component utility function f2pzq. One straightforward
and flexible option is

f2pzq “
ÿ

tPT

ÿ

kPX :xt‰k

zt,k. (3)

This simple alternative penalizes any corruption conducted by the attacker, and ensures
this risk is appropriately represented in the attacker’s utility function by its product
with w2. Higher-order polynomials in the zi,k-variables could also be leveraged if the
Player Z’s attack costs are not constant. A similar diversity of functional representation
is associated with f1pαt1 , βt1q. Subsequent sections explore this dynamic in greater detail
whereby we provide alternative structures according to varying attacker intentions.

Given that Problem P1 contains unknown parameters described probabilistically, it is
clearly a stochastic programming problem. The recursions within Constraint (2b) – (2e)
are defined to ensure clarity of communication and highlight the problem’s relationship
to canonical HMM algorithms but are not strictly necessary. That is, the recursion may
be written explicitly in the objective function.

3.1.1. State-Attraction and State-Repulsion Problems

In some settings, the attacker may only be interested in the decision maker’s condi-
tional distribution over a latent state at a particular time t1. For example, if the latent
state represented the attacker’s position and they wish to evade detection by the decision
maker, it is in the attacker’s best interest to minimize the decision maker’s belief about
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this true position. Similarly, it is conceivable that an attacker may wish to lure the
decision maker into believing a specific latent state i1 occurred at time t1. In either
setting, these objectives can be modeled using

f1pαt1 , βt1q “ c

˜

αt1,i1βt1,i1

ř

jPQ αt1,jβt1,j

¸

where c “ 1 in a state-attraction problem and c “ ´1 in a state-repulsion problem.
Therefore, the attacker will maximize or minimize, respectively, the smoothing probability
provided in Equation (1).

This component utility function is associated with an attacker who is concerned
with a single latent state. While useful, this may not always properly characterize the
attacker’s intent. Some attackers may wish to alter the decision maker’s inference over
multiple latent states, e.g., potentially the entirety of Q as presented subsequently.

3.1.2. Distribution-Disruption Problems

The attacker may be interested in disrupting the decision maker’s beliefs at time
t1 across Q to the maximum extent possible. More specifically, the attacker may wish
to maximize the distance between the filtering (or smoothing) distributions under
txtutPT and tytutPT . Numerous options exist to characterize the distance between the
uncorrupted and corrupted distributions, e.g., the Kullback-Leibler divergence and the
Hellinger distance (Cha, 2007). Generally speaking, a distribution-disruption problem
can be formulated by setting f1p¨q equal to the desired distance measure.

Let γ̂t,i represent probability of state i at some time t given the uncorrupted data,
txtutPT . Using this notation, the Kullback-Leibler divergence between the distributions
induced by txtutPT and tytutPT is

f1pαt1 , βt1q “
ÿ

iPQ
γ̂t1,i

˜

logpγ̂t1,iq ´ log

˜

αt1,iβt1,i
ř

jPQ αt1,jβt1,j

¸¸

.

The above can be used to identify a maximally perturbed distribution akin to an ill-
performing M -projection; however, the order of the distributions may be reversed in the
Kullback-Leibler divergence to identify a modified I-projection (Koller and Friedman,
2009) as well. Alternatively, if the Hellinger distance is utilized, then one may set

f1pαt1 , βt1q “
1

?
2

g

f

f

f

e

ÿ

iPQ

¨

˝pγ̂t1,iq
1{2 ´

˜

αt1,iβt1,i
ř

jPQ αt1,jβt1,j

¸1{2
˛

‚

2

.

Other statistical distances calculated via an optimization step may also be used (e.g., the
Wasserstein distance or the Kolmogorov–Smirnov statistic); however, when adopting such
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an approach, Problem P1 may need to be augmented with the requisite, distance-specific
constraints. Nevertheless, we henceforth utilize the Kullback-Leibler divergence in our
exploration, but such a selection is merely a matter of attacker preference.

3.2. Corrupting Decoding Predictions

The probabilistic dynamics of the underlying HMM suggests that, when corrupting
decoding predictions, the attacker is once more confronted with a non-linear, combina-
torial, stochastic problem. Problem P2 presents a mathematical programming model
for an attacker trying to disrupt a decision maker inferring the most likely sequence of
latent states given tytutPT .

P2 : max
z

uZpz, δq “ E rw1f1pδq ´ w2f2pzqs (4a)

s.t.
ÿ

kPX
zt,k “ 1, @t P T , (4b)

δ1,i “ πi

˜

ÿ

kPX
z1,kpbi,kρ1,k ` bi,x1p1 ´ ρ1,kqq

¸

, @i P Q, (4c)

δt,i “ max
jPQ

δt´1,jaj,i

˜

ÿ

kPX
zt,kpbi,kρt,k ` bi,xt

p1 ´ ρt,kqq

¸

, @t P T zt1u, i P Q. (4d)

where

ρt,k „ Bpλkq,@t P T , k P X ,
ai „ Dpξiq,@i P Q,
bi „ Dpζiq,@i P Q,
π „ Dpυq.

As with Problem P1, Problem P2’s objective function is the expected value of a
linear combination of two component utility functions. The cost of an attack vector,
f2pzq, may be of a similar form as those discussed for Problem P1. However, since the
decision maker is assumed to be solving a decoding problem, the attacker’s component
utility on their inference, f1pδq, differs from Problem P1. The storage of forward and
backward probabilities is no longer strictly required, and the Viterbi probabilities, δt,i,
are computed instead. However, in so doing, the constraints of Problem P2 are further
complicated via the inclusion of a maximum operator, i.e., Constraint (4d).

Given a realized set of uncertainties (i.e., ρ, A, B, π), the most-likely state sequence
from the decision maker’s perspective can be calculated via backtracking. However,
for notational simplicity, the requisite back pointers that store the states maximizing
Constraint (4d) are excluded from Problem P2; they are not necessary to identify the
attacker’s optimal solution for the following problems.
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3.2.1. Path-Attraction and Path-Repulsion Problems

As with Problem P1, there exist multiple component utility functions that may
be used for f1pδq. However, we are primarily concerned herein with path-attraction
and path-repulsion problems. In a path-attraction problem, the attacker wishes to
encourage the decision maker to believe in a particular sequence of latent states. This is
accomplished by setting

f1pδq “
ÿ

tPT

ÿ

iPQ
ct,iδt,i

such that ct,i ą 0 for states the attacker would like to encourage at each t P T .
Alternatively, a path-repulsion problem is characterized by ct,i ă 0. The attacker may
identify these sequences of latent states exogenously or base them off their expectation of
tqtutPT under the true data txtutPT . Likewise, it is straightforward to combine these two
frameworks to simultaneously attract and repulse a subset of latent state sequences. By
their nature, the δt,i-variables decrease in t, implying that, unless offset by increasing ct,i-
values, latent states visited later in the sequence would become relatively less important.
If such an effect is not desirable, an effective method is to set ct,i “ p

ř

jPQ δt,jq
´1 for any

state i the attacker wishes to encourage and set ct,i “ ´p
ř

jPQ δt,jq
´1 for any state i the

attacker wishes to discourage. Notably, by working as such with the δt,i-probabilities,
the attacker does not necessarily induce the Viterbi algorithm to output the desired
path; however, it is an approximation that is clearly associated with such induction.

4. Solution Methodologies

The HMM structure utilized by the decision maker presents multiple, simultaneous
difficulties. In the filtering, smoothing, and decoding settings, the attacker is presented
with a non-linear objective function. Moreover, this difficulty is compounded by a set of
decision variables of combinatorial cardinality, as well as a lack of knowledge that induces
a stochastic programming problem. Of the commercial optimization solvers available,
only global solvers are capable of accepting such problems as input; however, as shown by
Caballero et al. (2018), even these methods are not foolproof in complex situations such
as the one described in this paper. Finally, as a stochastic programming problem, solving
Problems P1 and P2 coincides with maximizing an expectation, but its non-linearity
limits the usefulness of canonical methods (e.g., sample-average approximation).

It is therefore apparent that customized solution techniques are required for Problems
P1 and P2. Given the success of standard HMM algorithms, their modification to our
perturbed setting would be ideal. Unfortunately, the relative efficiencies of the forward,
backward, and Viterbi algorithms draw from their dynamic-programming structure,
and this structure is dependent upon having observed a sequence of observations (e.g.,
txtutPT ) upon which to base calculations. While desirable, it is unclear how (or if), the
dynamic-programming structure of the aforementioned algorithms can be adapted to
simultaneously optimize the attacker’s actions and calculate the HMM’s joint probabilities.
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The tractable identification of an optimal attack vector is, at this juncture, a dubious
prospect; therefore, we set forth alternative means the attacker may leverage to maximize
their expected utility based on their subjective beliefs.

Within this section, we provide customized algorithms for solving variants of Problems
P1 and P2, with minor modifications. The first solution method is a heuristic inspired
by the ranking-and-selection problem (Powell, 2019). The second is an augmented-
probability-simulation technique rooted in inhomogeneous Markov chain Monte Carlo
sampling. The third is a Monte-Carlo enumeration technique having complete and
random-greedy variants. When allocated enough computational resources, the complete
variant will converge to the optimal solution of Problems P1 or P2. Based on this
property, this algorithm serves as the benchmark solution method. Notably, these
attacks may be used for each of the problems from Section 3 with minor modifications.
Likewise, they are applicable to alternative prior distributions to those assumed in the
previous section; an analytic prior is not even necessary, as long as the attacker can
sample from the associated distribution.

4.1. Ranking-and-Selection Heuristic

Once the attacker has probabilistically codified their beliefs about the decision maker’s
problem, Problems P1 and P2 can be recast via the universal canonical model set forth
by Powell (2019). More specifically, the HMM corruption problem is conceptualized as a
variant of the ranking-and-selection problem whereby the attacker is asked to estimate
the optimal z˚ P Z “ tz : zt,j P t0, 1u,@pt, jq P T ˆX ;

ř

jPQ zt,j “ 1,@t P T u after having
run N experiments according to some policy η. These experiments are simulations of
potential realities based upon the attacker’s beliefs about attack success and the HMM
parameterization. Traditional ranking-and-selection (R&S) problems consider a finite
action space of relatively small cardinality, thereby enabling estimates of this expectation
to be stored tabularly after each experiment n. In juxtaposition, the action-space
cardinality may be exceedingly large in our HMM corruption problems. Therefore,
in what follows, we utilize a function-approximation approach to estimate an action’s
expected value. This method is highly flexible, allowing for use of various combinations
of function-approximation methods and combinatorial-optimization routines.

Powell’s universal canonical model requires the following elements be defined. Se-
quences of experimental values and estimates are denoted by n superscripts to distinguish
them from the temporal, HMM sequences denoted by t subscripts.

• State Variables: The system state prior to conducting experiment n is denoted
by θn, and determines the attacker’s beliefs about each action’s expected value.
These beliefs are codified via a functional approximation µ̂pzn|θnq, i.e., θn are the
parameters of the attacker’s functional approximation prior to experiment n. The
exact structure of θn depends upon the approximation utilized; however, under
any setting, the set of all possible state variables is denoted by Θ.

• Decision Variables: For each experiment n “ 1, ..., N , the attacker selects zn P Z.
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• Exogenous Information: Given some attack vector zn, the attacker’s payoff is
determined by the decision maker’s inference on tytutPT which is in turn affected
by the realized exogenous information, i.e., the random ρ-, A-, B-, and π-variables.
An instance of this exogenous information during experiment n is referred to as
ωn P Ω.

• Objective Function: For Problems P1 and P2, the attacker’s objective is to maximize
their expected reward by selecting an experimental policy η that respectively solves

max
η
E

“

upZηpθN`1q, αt1 , βt1q
‰

and
max
η
E

“

upZηpθN`1q, δq
‰

• System Model : Given that the system state, θn, denotes the parameters underpin-
ning µ̂pzn|θnq, the system model, SM pθn, zn, ωnq, corresponds to the sequential
update of θn after each experiment, i.e., SM : Θ ˆ Z ˆ Ω Ñ Θ. The system
model reflects the sequential optimization of the θn parameters to θn`1 after each
experiment n. Example system models θn-updates include stochastic gradient
descent and recursive least squares, among others.

Given this formulation, Algorithm 4 provides an overarching R&S heuristic that is
applicable to either problem under any of the attacker utility functions presented in
Section 3. The attacker must input their beliefs about the associated uncertainities (i.e.,
gωq, their initial functional-approximation parameterization (i.e., θ1q, and the number of
experiments they wish to conduct (i.e., N). The R&S heuristic concludes by outputting
a recommended attack, ẑ˚. Note that Step 6 may be omitted for most problems; it is
only required in select settings, e.g., distribution-disruption problems.

Algorithm 4 Ranking-and-Selection Heuristic

1: Input: gω, θ
1, N

2: Output: ẑ˚

3: for n “ 1, . . . , N do Ź May alternatively use clock-time limit
4: Select zn “ Zηpθnq

5: Sample ωn „ gω
6: Solve decision maker’s HMM problem with txtutPT Ź If required
7: Use ωn and zn to determine tytutPT
8: Solve decision maker’s HMM problem with tytutPT and ωn, and compute uZp¨q

9: Update θn`1 “ SM pθn, zn, ωnq

10: end for
11: Select ẑ˚ “ ZηpθN`1q

12: return ẑ˚

The flexibility of the formulation allows for the construction of multitudinous R&S-
heuristic variants. The policy η may adopt multiple structural forms (i.e., see Powell,
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2019). Greedy or ε-greedy policies on µ̂pzn|θnq are sensible alternatives prevalent in
the R&S literature; however, since |Z| can inhibit the use of complete enumeration
techniques, it may be necessary to identify the greedy policy via integer programming
or analogous heuristic methods (e.g., genetic algorithms). Moreover, as with canonical
reinforcement learning methods, the function approximation, µ̂pzn|θnq, may be based
upon any statistical, regression model (e.g., regression trees, neural networks, etc.) with
a correspondingly tailored system model. For example, if µ̂pzn|θnq is a linear regression
model then, akin to Powell (2007), it is sensible to utilize recursive least squares as a
system model; however, if µ̂pzn|θnq is a neural network then system model updates via
stochastic gradient descent are more applicable3. Ultimately, the attacker is likely best
served by tuning these qualitative hyperparameters via some sort of experimental design,
e.g., see Jenkins et al. (2021).

4.2. Augmented Probability Simulation

The problems described in Section 3 can each be recast as indentifying a solution to

max
z

ÿ

ρ

ż

A

ż

B

ż

Π
uZpz, ϕqgApAqgBpBqgπpπqPρpρqdπ dB dA (5)

where ϕ “ Φpz,A,B, π, ρq is determined by z, A, B, π, and ρ, and represents the relevant
set of parameters and decision variables for the associated problem (e.g., ϕ “ pαt1 , βt1q

for Problem P1).
One possible means to solve this problem consists of leveraging simulation-based

techniques, such as the augmented probability simulation (APS) methods of Bielza et al.
(1999). This requires defining an augmented distribution on the product space of attacks
and uncertainties of the form

ğpz,A,B, π, ρq9uZpz, ϕqgApAqgBpBqgπpπqPρpρq. (6)

This distribution is well-defined provided that the utility is positive and bounded for all
z and ϕ, which can be achieved by scaling the utility function appropriately.

It is straightforward to see that the global mode of the marginal of ğpz,A,B, π, ρq in
z, coincides with the solution of Equation (5). Therefore, if we sample pz,A,B, π, ρq „

ğpz,A,B, π, ρq, the sample mode of z approximates the optimal solution. However, as
acknowledged by Müller et al. (2004), identifying the mode of the z samples may be
challenging, especially when z is high dimensional. This difficulty is most apparent
when the marginal augmented distribution is characterized by flat regions around its
global mode. Both of these conditions are likely to emerge in our setting, suggesting an
alternative to standard APS methods may be required.

3In Section 5, we illustrate two R&S variants based on neural networks, that differ in identification of
the greedy action, i.e. Monte Carlo tree search and simulated annealing.
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Following procedures set forth by Müller et al. (2004), mode identification can be
facilitated by defining an alternative augmented distribution. More specifically, an
augmented distribution must be defined such that its marginal in z is proportional

to
”

ř

ρ

ş

A
ş

B
ş

Π uZpz, ϕqgApAqgBpBqgπpπqPρpρq dπ dB dA
ıH

where H ě 1 is called the

augmentation parameter. Since the associated, marginal-augmented distribution is
more peaked, its mode is more easily identified. Therefore, we define an augmented
distribution by creating H copies of our unknown parameters. This set of copies is
denoted by tAh, Bh, πh, ρhuhPH such that H “ t1, 2, ...,Hu. The augmented distribution
is given by

ğHpz, tAh, Bh, πh, ρhuhPHq9
ź

hPH
uZ

`

z, ϕh
˘

gApAhqgBpBhqgπpπhqPρpρhq. (7)

where ϕh “ Φpz,Ah, Bh, πh, ρhq. It is straightforward to prove that the marginal of
ğHpz, tAh, Bh, πh, ρhuhPHq in z is proportional to

“
ř

ρ

ş

A
ş

B
ş

Π uZpz, ϕqgApAqgBpBqgπpπq

Pρpρqdπ dB dA
‰H

.
Direct sampling from the distribution in Equation (7) is not feasible, since the

exact specification of ğH is costly. Instead, samples can be obtained using Markov-
chain-Monte-Carlo (MCMC) methods (Tierney, 1994). In particular, we design a
Metropolis-within-Gibbs sampling approach for use herein.

Implementing the Gibbs step requires generating samples from the full conditionals
ğHpzt|z´ttA,B, π, ρuhPHq where z´t “ tzt1ut1PT zttu, and to sample from the full condi-

tionals for Ah, Bh, πh and ρh for h “ 1, . . . ,H. For communicative clarity, let us rewrite
Equation (7) as

ğHpz, tAh, Bh, πh, ρhuhPHq9 exp

#

ÿ

hPH
logruZ

`

z, ϕh
˘

s ` logrgApAhqs ` logrgBpBhqs

` logrgπpπhqs ` logrPρpρhqs

+

.

In so doing, it can be readily observed that

ğHpzt|z´t, tA
h, Bh, πh, ρhuhPHq9 exp

˜

ÿ

hPH
log

”

uZ

´

zt Y z´t, ϕ
h
¯ı

¸

.

This is simply the softmax distribution over
ř

hPH logruZ
`

zt Y z´t, ϕ
h
˘

s for every pos-
sible value of zt. Therefore, given z´t and tAh, Bh, πh, ρhuhPH, sampling from the full
conditional of zt is straightforward.

Conversely, to sample from the full conditionals for Ah, Bh, πh and ρh for h “

1, . . . ,H, we need to utilize the Metropolis algorithm. For example, noticing that the

17



full conditional for Ah is

ğH

´

Ah|z, tAh1

uh1PHzthu, tB
h1

, πh
1

, ρh
1

uh1PHs

¯

9 exp
´

logrgApAh1

qs ` log
”

uZpz, ϕhq

ı¯

,

samples of Ah1

can be obtained via a Metropolis approach as follows. Assume the current
state of the Markov chain is z,Ah, Bh, πh, ρh and ϕh “ Φ

`

z,Ah, Bh, πh, ρh
˘

, then

1. Sample Ãh „ gA.

2. Compute ϕ̃h “ Φ
´

z, Ãh, Bh, πh, ρh
¯

3. Accept Ãh with probability

min

#

1,
uZpz, ϕ̃hq

uZpz, ϕhq

+

.

Samples from the conditionals in Bh, πh, ρh can be obtained sequentially in a similar
way. Moreover, samples from the full conditionals for Ah, Bh, πh, ρh having different
h-values can also be obtained in parallel. Sampling sequentially from these conditional
distributions will asymptotically produce samples from ğHpz, tA,B, π, ρuhPHq.

However, as suggested by Müller et al. (2004) this sampling framework may result
in the algorithm getting stuck in local modes, thereby inhibiting the identification of
the global mode. This issue can be mitigated by combining this sampling scheme with
an annealing schedule that iteratively increases H. This produces an inhomogeneous
Markov chain whose limiting distribution is, under certain conditions (Müller et al., 2004),
uniform over the set of optimal attacks. Algorithm 5 outlines our APS approximation
method which utilizes the augmented distribution ğH , the aforementioned Metropolis-
within-Gibbs sampling approach, and an annealing schedule tHnu8

n“1 of variable length;
note that ek denotes the standard basis vector in R|X | having a one in the position k
and zero elsewhere. At each iteration n, a complete vector zn is stored. The optimal
attack vector ẑ˚ is estimated as the mode of these samples, excluding the burn-in period
n “ 1, ..., n1 ´ 1. Since z is a discrete random variable, it is often useful to approximate
this mode for large T , e.g., by estimating the mode of each zt independently, to avoid
excessively large N -values.

To guarantee convergence to the optimal attack(s), the inhomogeneous MCMC
simulation needs to be designed so that the stationary distribution of the Markov chain
for a fixed H is precisely ğH . Following well-established literature of MCMC (Tierney,
1994), it is straightforward to see that the limiting distribution of the Metropolis-within-
Gibbs Markov chain defined in Algorithm 5 for each h P Hn is precisely ğh. For further
information regarding APS, we refer the interested reader to Müller et al. (2004) for
theoretical proofs of the algorithm’s convergence, and to Ekin et al. (2014) and Ekin
et al. (2022) for augmented probability simulation applications in decision-theoretic
settings.
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Algorithm 5 APS Approximation

1: Input: gA, gB, gπ, Pρ and tHnu8
n“1, N

2: Output: ẑ˚

3: Initialize: zt for t “ 1, . . . , T
4: Set n “ 1
5: while n ă N do Ź May alternatively use clock-time limit
6: Sample Ah, Bh, πh, ρh using the Metropolis step @h P Hn

7: for t “ 1, 2, . . . , T do
8: For h P Hn and k P X , determine ϕh :“ Φ

`

ek Y z´tq, A
h, Bh, πh, ρh

˘

9: Sample z̃t from softmax distribution described in the Gibbs step
10: Update zt “ z̃t.
11: end for
12: Set zn “ tztutPT
13: Set n “ n` 1
14: end while
15: Estimate ẑ˚ as the sample mode of tzn : n ě n1u

16: return ẑ˚

4.3. Monte-Carlo Enumeration

Monte-Carlo sampling techniques are popular solution approaches for standard ARA
problems; they serve to numerically approximate otherwise intractable expectation
functions. Akin to the proposed R&S heuristic, our complete Monte-Carlo enumeration
(CME) method leverages samples from gω to inform better estimates of the utility
of taking each z P Z; however, the sampling methods utilized are distinct. Both
solution approaches randomly sample the attack effects and the decision maker’s HMM
parameterization (i.e., ωn „ gω), but they differ in their evaluation of corruption attacks.
Whereas the R&S heuristic selects a single z P Z to evaluate on ωn according to η, the
CME technique evaluates every z P Z on each ωn. In so doing, the latter method is able
to garner more information from each ωn, but at the expense of greater computational
effort. Psuedocode for this solution method is provided in Algorithm 6. The algorithm
is applicable to any of the problems presented in Section 3, but Step 5 is only strictly
required in a distribution-disruption problem. This approach serves as a baseline for the
other algorithms discussed herein.

To ensure termination on sufficiently large instances, Algorithm 6 can be modified
to form a random-greedy variant. random-greedy Monte-Carlo enumeration (RME)
approach selects an incumbent attack at random and calculates its expected utility. The
expected utility of another random attack is then calculated and, if improved, this new
attack becomes the incumbent solution. The algorithm terminates when no improvement
is identified. While CME may be effective for solving small-size instances, RME is more
scalable to larger instances.

Finally, we note that the CME approach is a simpler alternative to the APS scheme.
However, several issues are anticipated to arise for larger-sized instances. The most
significant concern arises when the maximization of the expected utility, approximated
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Algorithm 6 Complete Monte-Carlo Enumeration

1: Input: gω, N
2: Output: ẑ˚

3: for n “ 1, . . . , N do
4: Sample ωn „ gω
5: Solve decision maker’s HMM problem with txtutPT Ź If required
6: for z P Z do
7: Use ωn and z to determine tytutPT
8: Solve decision maker’s HMM problem with tytutPT
9: Set ûn,z “ unZp¨q

10: end for
11: end for
12: Set ūz to the sample average of ûn,z, @z P Z
13: Identify ẑ˚ “ argmaxz ū

z

through Monte Carlo sampling, becomes challenging due to the flatness of the approxi-
mation with respect to z. In such cases, numerical errors inherent in the Monte Carlo
approximation of the expected utility may overshadow a relatively small difference in
expected utility between the optimal and inferior attacks. In juxtaposition, the APS
scheme transforms the simulation-optimization problem into a grand simulation problem
using a series of augmented probability models that become more peaked around the
optimal attack.

5. Testing, Results, and Analysis

This section analyzes the effects of HMM corruption on a decision maker’s inference
and examines the efficacy of the developed heuristics to conduct such attacks. This
is accomplished via four blocks of experimentation. Our focus in Section 5.1 is to
determine the degree to which data corruption can negatively affect a decision maker’s
inference. Therein, we explore the effect of varying objective-function weights on the
attacker’s behavior and illustrate the devastating effects that relatively low-perturbation
data-corruption attacks may generate. Analysis within this section also reveals that,
although the Monte Carlo enumeration algorithm can identify high-quality solutions, it
is computationally infeasible for larger-sized HMMs. Therefore, in Sections 5.2 and 5.3
we provide detailed analyses of the use of our R&S heuristic and the APS approximation
routine. Section 5.2 analyzes the effect of the HMM structure on each algorithm’s
performance, whereas Section 5.3 focuses on the impact of uncertainty on solution
quality. Section 5.4 provides a case study illustrating the practical relevance of our
attacks by attacking an HMM used for part-of-speech tagging.

While the case study leverages a standard laptop for computation to demonstrate
real world application feasibility, the remainder of testing was performed using relatively
powerful machines. This enabled parallelization and multiple runs of each attack for
improved statistical analysis. Such testing was performed with the LOVELACE High

20



Performance Computing (HPC) infrastructure housed at the Institute of Mathematical
Sciences of the Spanish National Research Council (ICMAT-CSIC). In particular, 12
nodes were leveraged for experimentation, each equipped with 187GB of RAM and two
32-core, 2.30GHz Intel(R) Xeon(R) processors. For additional information regarding
the HPC cluster layout and the computational resources available therein, we refer the
interested reader to ICMAT-CSIC (2022).

5.1. Efficacy of HMM Corruption

The purpose of this section is to illustrate the adverse effects of data corruption on
HMM inference and showcase how this relates to the attacker’s objectives and knowledge.
More specifically, we demonstrate that, even under substantial uncertainty about the
decision maker’s HMM, the methods developed herein can devastate inference quality.
Moreover, we also explore the effectiveness of the CME attack and its limitations with
respect to instance size. We examine each problem-and-objective-function combination
with this attack by utilizing a modestly sized HMM for tractable illustration. Whereas
in-depth testing of the R&S and APS solution approaches are performed in subsequent
sections, this section also demonstrates the marginal effect of allocating additional
computational resources for each attack. In so doing, we highlight that our attacks can
expeditiously identify quality solutions.

Assume that Player D’s true HMM is defined by

AD “

«

0.85 0.05 0.1
0.05 0.9 0.05
0.5 0.25 0.25

ff

,

BD “

«

0.699 0.05 0.1 0.05 0.1 0.001
0.001 0.1 0.1 0.299 0.3 0.2
0.1 0.2 0.1 0.2 0.1 0.3

ff

,

πD “ r0.5 0.3 0.2s ,

such that there are three possible latent states and six possible emissions at each state.
This precise parameterization is unknown to Player Z; however, we assume that the
attacker’s beliefs are correct in expectation (i.e., ErAs “ AD). The attacker is also
assumed to believe that the probability of a successful attack on an observation is
constant. In this manner, we define two distinct uncertainty levels upon which to test
our attacks. The lower uncertainty condition is characterized by a Dirichlet precision
(i.e., κ)4 of 10,000 and a constant attack-success probability of 0.95. Conversely, the high
uncertainty condition corresponds to a Dirichlet precision of 100 and an attack-success
probability of 0.75. Assuming T “ t1, ..., 5u, Player Z observes the true emissions
X “ t5, 4, 6, 4, 5u and wishes to thwart the decision maker’s inference in accordance with
their own self-interest.

4Recall that the precision of a Dirichlet distribution equals the sum of its parameters. These values
are varied under the constraint that, in expectation, Player Z’s beliefs coincide with Player D’s true
parameterization.
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We examine Player Z’s behavior in the state-attraction, state-repulsion5, distribution-
disruption, and path-attraction problems under the two aforementioned uncertainty levels
and varying ratios of w1{w2. For the state-attraction problem, Player Z desires Player D
to believe Q3 “ 1, whereas in the state-repulsion problem, Player Z desires Player D not
to believe Q3 “ 2. In the distribution-disruption problem, Player Z wants to maximally
perturb Player D’s smoothing distribution at t1 “ 3 while, in the path-attraction problem,
Player Z wishes the decision maker to infer Q “ t3, 1, 1, 1, 3u as the most probable
sequence of hidden states. The attacker aims to maximize their expected utility in these
settings; however, to highlight the effect of HMM corruption for each problem, distinct
performance measures are reported. More specifically, performance measures for the
state-attraction, state-repulsion, distribution-disruption, and path-attraction problems
are respectively set as Player D’s subjective belief of Q3 “ 1, Player D’s subjective belief
of Q3 “ 2, the Kullback Leibler divergence between the true and corrupted smoothing
distributions, and the normalized Hamming distance6.

We approximate the effect of ẑ˚ on these metrics for each problem-and-uncertainty
combination as a function of w1{w2. An N -value of 10,000 was utilized to estimate f1p¨q

for each attack alternative and problem type. These estimates were subsequently used to
estimate the expected utility of every attack for each w1{w2. The attack alternatives that
maximize the expected utility were selected as ẑ˚-variables. Once identified, the attack
ẑ˚ was simulated M times to generate an approximate distribution over the performance
metrics. The value of M was selected to ensure an appropriate level of precision for
the mean performance in each problem. This required M “ 5, 000 simulations for the
state-attraction and distribution-disruption problems, but M “ 1, 000 sufficed for the
state-repulsion and path-attraction problems. Within each problem, the associated
M -value is kept constant across uncertainty levels to ensure proper comparisons.

Figure 4 summarizes the results of this testing for each problem-and-uncertainty pair.
Within each plot, the mean performance measures over the M samples are represented
by a blue and black line for the low- and high-uncertainty levels, respectively; ˘2 ps{

?
Mq

confidence regions are shaded grey. It can be observed that, in any problem when
w1{w2 Ñ 0, the attacker determines the benefits of corrupting the data are outweighed
by its costs. The attacker chooses to keep txtutPT unchanged and, in so doing, concedes
undesirable inference behavior by Player D. For example, in the state-repulsion problem,
when w1{w2 Ñ 0, the probability of Q3 “ 2 is approximately 0.95, i.e., the probability
inferred by the decision maker using the true observations. However, as w1{w2 increases
and relative corruption costs decrease, this balance shifts and Player Z begins to corrupt
the data. Notably, across all plots, it is interesting to note that step-function-like
behavior is induced. This behavior can also be observed by inspecting ẑ˚ at each w1{w2

for every problem. That is, ẑ˚ tends to stay constant across an interval of ratios until the

5The state-attraction and -repulsion problems are, structurally speaking, the same problem. However,
we solve both herein to explore how varying objective-function parameterizations may affect the attacker’s
solution. For brevity, we exclude such exploration of the remaining problems.

6The normalized Hamming distance between two strings with the same length is the number of
positions at which the corresponding symbols are different, divided by the strings’ length.
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reward of attacking some xt is worth the penalty, at which point a new optimal attack
is determined. The result of this behavior is that the expected value of the performance
measures stays constant over the domain wherein ẑ˚ is constant.
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(c) Distribution Disruption
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(d) Path Attraction

Figure 4: Ratio Plots for each Problem-and-Uncertainty Pair

Inspection of Figure 4 reveals that distinct values of w1{w2 are necessary to induce
modified attacker behavior. For example, in the state-attraction problems, Player Z is
incentivized to maximally perturb the observation vector at w1{w2 « 30, but this behavior
is not induced in the path-attraction problems until w1{w2 ą 3. By inspecting each
subfigure in Figure 4, once can discern how the uncertainty levels affect the attacker’s
behavior. Notably, within each problem, the high-uncertainty level alters the range
of w1{w2-values in which a ẑ˚ is estimated to be optimal and, in expectation, tends to
induce a less-preferable, maximally perturbed outcome. Likewise, tighter confidence
regions about the attack’s expected value can be derived under low uncertainty than
high uncertainty.

The plots in Figure 4 are also interesting in that, once w1{w2 is sufficiently far from
zero, a dramatic increase in the performance measure of each problem is observed. The
degree of improvement is problem dependent (e.g., compare the behavior of Subfigures
4c and 4d near w1{w2 “ 0), but the pattern is consistent. Nevertheless, this behavior
naturally leads one to inquire about the nature of the requisite attacks, i.e., the degree to
which they perturb txtutPT . Fortunately, the size of the HMM examined in this section
allows us to readily examine this in greater detail.

We perform additional analysis on the attacker’s problems by enumerating the effects
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of every z P Z; M simulations of each attack z are performed to estimate its mean
performance for the aforementioned problem types. The box plots in Figure 5 examine
to what degree attacks of differing perturbation levels (i.e., the number of corrupted
observations) affect the decision maker’s inference. Examination of these plots yields
noteworthy insights. The attacker could considerably disrupt Player D’s inference by
corrupting only a single observation in some cases, assuming they have the means to
readily identify it. For example, in the case of low uncertainty, corrupting one observation
could change Player D’s subjective probability from « 0 to 0.8 in the state-attraction
problem while a similar change from « 0.95 to 0.1 is observed in the state-repulsion
problem. Such modest attacks are not quite as successful in the distribution-disruption
or path-attraction problems, but high-quality results can still be achieved without
corrupting the entirety of txtutPT . Moreover, it can also be observed in the variability of
each subfigure that high-perturbation attacks are not necessarily effective; in fact, the
variability in an attack’s success increases with the number of corrupted observations.
Although these results collectively highlight the disruption that HMM corruption can
induce on a decision maker’s inference, they also emphasize the difficulty of the attacker’s
problems. This is most apparent by considering the medians and inter-quartile ranges
in Figure 5. Effective attacks that limit the number of corrupted observation are the
exception, not the rule. Conversely, blindly corrupting a large number of observations
has no guarantee of success; such attacks have better median performance but are highly
variable.

Finally, perhaps the most noteworthy result in this section pertains to the performance
of the CME algorithm. Despite the difficulty of the examined problems, this solution
methodology was readily able to identify high-quality solutions. Furthermore, it is also
worth emphasizing that, whereas the attacks are built under both aleatoric and epistemic
uncertainty (i.e., the unknown attack success and HMM parameters, respectively), the
evaluations provided herein are performed under aleatoric uncertainty only. This fact
further emphasizes the utility of our methodology. Despite not knowing the outcome of
an attack or the decision maker’s true HMM at design time, our attacks were able to
substantially thwart Player D’s inferences.

Such a result bodes well for the real-world applicability of such corruption attacks.
The attacker is unlikely to know the true HMM, but the methods presented herein
allow to identify high-quality attacks despite this limitation. Unfortunately, although
the CME method is effective, additional experimentation found it too computationally
burdensome for larger instances. Given some w1{w2, the problems examined within this
section can generally be solved within 30-55 minutes using the aforementioned hardware
but, for larger-sized HMMs having a T of greater cardinality, the required computational
effort rapidly increases. This motivates the utilization of other methods, e.g., the R&S
and APS methods discussed in the next two subsections.

5.2. Effect of HMM Structure on Solution Method Performance

This section focuses on the effect of the HMM structure on the R&S and APS
methods. Following the best practices set forth by Coffin and Saltzman (2000), we
consider the 23´1

III design presented in Table 2 upon which to test algorithm performance.
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(e) Distribution-Disruption, Low Uncertainty
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(f) Distribution-Disruption, High Uncertainty
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(g) Path-Attraction, Low Uncertainty
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(h) Path-Attraction, High Uncertainty

Figure 5: Mean Attack Efficacy by Number of Perturbed Observations
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The distributions defining the decision maker’s true HMM parameters (e.g., AD) are
generated randomly via a Dirichlet distribution with all concentration parameters set to
one. The true observations are generated randomly from a discrete uniform distribution
with support t1, 2, ...|X|u, whereas λ “ 0.95 and κ “ 10, 000 for each. Table 3 depicts
the attacker’s goals for each problem, and the objective function weight ratios, w1{w2,
are selected to correspond with a conservative attacker who is unwilling to corrupt all
observations. The complete parameterizations are available online. 7

Table 2: 23´1
III Design For HMM Structure Testing

Design Point |Q| |X| |T |

1 30 30 30

2 10 10 30

3 10 30 10

4 30 10 10

Table 3: Attacker’s Objective Function Parameters by Problem and Design Point

Problem w1{w2

Design Point

1 2 3 4

State-Attraction 20 {t1 “ 25, i1 “ 4} {t1 “21, i1 “9} {t1 “9, i1 “7} {t1 “9, i1 “22}
State-Repulsion 15 {t1 “ 23, i1 “ 9} {t1 “29, i1 “ 4} {t1 “5, i1 “6} {t1 “9, i1 “12}

Distribution-Disruption 3 t1 “ 23 t1 “29 t1 “5 t1 “9

Path-Attraction 2.55 t0u@tPT

Two variants of each of the R&S and APS methods are tested against the RME
algorithms; the CME approach is ignored because empirical testing found it to be overly
encumbered for instances of this size. The two R&S methods are henceforth referred to
as R&S-A and R&S-B. Both utilize a multi-layer perceptron neural network as µ̂p¨q to
regress the attack’s expected utility, but differ in their use of Monte-Carlo tree search
and simulated annealing to identify a greedy action, respectively. Further details on the
implementation of these methods, as well the hyperparameter tuning that informed them,
is provided in Appendix A. Likewise, the APS techniques are referenced as APS-A and
APS-B; the approaches have annealing schedule of tHnu8

n“1 and tHnu8
n“500, respectively.

These schedules result in APS-A exploring the solution space more thoroughly than
APS-B which instead favors exploitation.

We explore the efficacy of these attacks both in terms of solution quality and
computational effort. This is accomplished by allowing each algorithm to operate for
t15, 30, 45, ..., 1200u seconds on every problem instance; the expected utility of the output
attack at each time limit is calculated. Due to the stochastic nature of the attacks
and the solution approaches, this procedure is replicated 10 times for each algorithm;

7Available at https://github.com/roinaveiro/corrupting hmms
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mean expected utilities across these repetitions plus/minus two standard deviations are
reported.

Several trends emerged from this analysis across each problem type. This behavior
is typified within the path-attraction instances as provided in Figure 6. Notably, APS-B
and R&S-B converge toward attacks having comparable expected utilities across all
instances and, although not a firm rule, APS-B tends to do so quicker than R&S-B.
Alternatively, APS-A and R&S-A are more variable. For instances defined by smaller
|T | (i.e., Design Points 3 and 4) they also converge toward high-quality solutions but,
for larger |T |-values, they do not identify valuable attacks. The computational time
required to identify such solutions is variable as well. In juxtaposition, RME consistently
identifies lower-quality attacks in every instance. Although not depicted herein, similar
trends are also apparent across the other three problem types.

Figure 6: Evolution of Path-Attraction Expected Utilities over time by Algorithm

Despite their global similarities, it is interesting to note that the algorithms vary
systematically in the type of attacks they identify. Table 4 compares and contrasts each
algorithm with respect to the performance of their final attacks, i.e., those identified at
1200 seconds, across all problem-and-design-point pairs. Performance is based on the
respective objective function of the problem of interest. To account for the stochasticity
in attack success, solution quality was estimated by simulating their effects 500 times
for the state-attraction and distribution-disruption instances, and 100 times for the
state-repulsion and path-attraction instances; averages are reported across all repetitions.
The impact measure is problem-specific and refers to damage caused to the decision
maker’s inference, whereas ∆ refers to the total number of observations attacked. The
greatest impact and the least ∆{|T | achieved by the algorithms are bolded for each
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problem-and-design-point pair.
Inspection of this table reveals additional patterns obfuscated by the expected-utility

calculations. APS-B and R&S-B are better able to balance the attacker’s multi-objective
utility function; however, in so doing, they often find less damaging attacks to the
decision maker’s inference than their competitors. In particular, of the 16 problem-and-
design-point pairs, the APS-B and R&S-B algorithms identified the most impactful
attack two and four times, respectively. The expected impact varied substantially
about problem types as well. R&S-B never identified the most impactful distribution-
disruption attack; APS-B never did so for the state-attraction problem. However, the
APS-B attacks appear to perturb relatively few perturbations in comparison to their
impact. For specific problem-and-design-point pairs, the other three methods identified
more impactful attacks. This success, however, was generally counterbalanced by higher
rates of data perturbation. The APS-A approach is an exception to this rule in that it
at times acts too conservatively by perturbing relatively few observations.

Table 4: Mean Impact and Proportion of Observations Attacked (Structure Testing)

Problem Algorithm
Design Pt. 1 Design Pt. 2 Design Pt. 3 Design Pt. 4

Impact ∆{|T | Impact ∆{|T | Impact ∆{|T | Impact ∆{|T |

APS-A 0.144 0.583 0.040 0.030 0.635 0.310 0.124 0.130

State
APS-B 0.136 0.043 0.009 0.007 0.636 0.300 0.120 0.120

Att.1
R&S-A 0.169 0.773 0.038 0.517 0.637 0.420 0.128 0.280

R&S-B 0.179 0.327 0.012 0.010 0.627 0.340 0.125 0.130

RME 0.125 0.830 0.074 0.687 0.605 0.960 0.127 0.580

APS-A 0.173 0.540 0.502 0.033 0.568 0.100 0.168 0.100

State
APS-B 0.172 0.037 0.509 0.033 0.563 0.100 0.170 0.100

Rep.2
R&S-A 0.174 0.740 0.500 0.490 0.566 0.100 0.166 0.180

R&S-B 0.177 0.163 0.515 0.047 0.566 0.140 0.169 0.100

RME 0.167 0.810 0.493 0.680 0.577 0.710 0.167 0.520

APS-A 2.221 0.653 2.202 0.033 1.445 0.210 1.520 0.100

Dist.
APS-B 2.140 0.033 2.213 0.033 1.435 0.200 1.518 0.100

Disrupt.3
R&S-A 2.283 0.747 2.297 0.510 1.436 0.370 1.459 0.200

R&S-B 2.206 0.453 2.279 0.327 1.426 0.290 1.511 0.100

RME 2.203 0.877 2.192 0.687 1.270 0.830 1.517 0.550

APS-A 0.980 0.817 0.851 0.190 0.612 0.340 0.900 0.000

Path
APS-B 0.940 0.080 0.860 0.010 0.707 0.280 0.900 0.000

Att.4
R&S-A 0.962 0.740 0.857 0.483 0.648 0.520 0.921 0.150

R&S-B 0.930 0.027 0.867 0.017 0.620 0.360 0.900 0.000

RME 0.972 0.813 0.897 0.690 0.718 0.700 0.923 0.460

1 Impact is the difference between perturbed and unperturbed data of the probability of i1 at t1

2 Impact is the difference between unperturbed and perturbed data of the probability of i1 at t1

3 Impact is the KL divergence between state distributions under unperturbed and perturbed data
4 Impact is the Normalized-Hamming distance of most-likely state sequences under perturbed data and attacker’s goal

Collectively, these results illustrate that the APS and R&S algorithms can effectively
thwart larger-scale HMM instances. The APS-B and R&S-B configurations were the most
effective for the instances explored herein, but their performance varied. This variation
was especially apparent across |T |-values, a fact deriving from the exponential effect |T |

has on the attack space’s cardinality. Nevertheless, many of the results discussed herein
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are specific to the parameterization utilized within this section. Alternative uncertainty
structures about the decision maker’s HMM may also play a significant role in the
algorithm’s efficacy. Exploring such dynamics is the focus of the next subsection.

5.3. Effect of Uncertainty on Solution Method Performance

The same algorithm variants studied in the previous section are utilized herein
to explore the effect of uncertainty on their performances. The HMM size is fixed
at |Q|, |X |, and |T | “ 20; however, the attacker’s beliefs and the attack’s success
probability is varied via the 22 factorial design provided in Table 5. The decision
maker’s true HMM parameters are built in a similar manner to Section 5.2 sampling
from Dirichlet distributions; the true observations are likewise built by sampling from
discrete uniform distributions. The w1{w2-values for each problem are maintained constant
from Section 5.2, as is the attacker’s goal in the path-attraction problem. However,
their goals in the state-attraction, state-repulsion and distribution-disruption instances
correspond to tt1 “ 17, i1 “ 4u, tt1 “ 16, i1 “ 7u, and t1 “ 16, respectively. The complete
parameterization of these instances is available online8.

Table 5: 22 Full Factorial Design for Uncertainty Testing

Parameter
Design Points

1 2 3 4

λ 0.95 0.95 0.75 0.75

κ 10,000 100 10,000 100

Testing that is similar to the previous sub-section was conducted on each algorithm
for every problem-and-design-point pair. Figure 7 provides the algorithms’ performance
in relation to the allocated computation time for the distribution-disruption problem.
These results bear resemblance to those of the previous sub-section in the APS-B and
R&S-B tend to find comparable solutions, but with APS-B doing so more expeditiously.
The RME method again underperforms with respect to its peers. Nevertheless, the
performance of APS-A is distinct in these instances from the previous section. It tends
to converge toward comparable solutions to that found by APS-B and R&S-B; however,
the variability about its expected utility is great, indicating highly variable performance.
As with the previous sub-section, similar trends are also apparent across the other three
problem types.

Table 6 depicts the mean performance of each algorithm for the final attacks across
the four design points. These values are calculated by averaging the attacks’ performances
over quantities referenced in Section 5.2. Despite the varied uncertainty, APS-B continues
to effectively balance perturbed observations with impact, and is able to identify high-
quality but low-cardinality attacks. Likewise, as in the structural testing, the RME
algorithm finds high-perturbation attacks of varied impact. In juxtaposition, the two R&S
approaches only identify the most impactful attack once out of the sixteen combinations.

8Available at https://github.com/roinaveiro/corrupting hmms
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Figure 7: Temporal Evolution of Distribution-Disruption Expected Utility by Algorithm

The APS-A algorithm performs much better across the uncertainty levels than the
structural level; its impact is often among the top three of the examined attacks.
Finally, no attack generates substantial impact on the path-attraction problem since the
w1{w2-value examined makes the cost of the attack less than its reward.
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Table 6: Mean Impact and Proportion of Observations Attacked (Uncertainty Testing)

Problem Algorithm
Design Pt. 1 Design Pt. 2 Design Pt. 3 Design Pt. 4

Impact ∆{|T | Impact ∆{|T | Impact ∆{|T | Impact ∆{|T |

APS-A 0.255 0.145 0.254 0.140 0.121 0.085 0.121 0.080

State
APS-B 0.266 0.150 0.247 0.135 0.133 0.090 0.127 0.085

Att.1
R&S-A 0.171 0.625 0.162 0.550 0.108 0.570 0.116 0.625

R&S-B 0.216 0.275 0.259 0.145 0.122 0.345 0.133 0.090

RME 0.167 0.830 0.156 0.810 0.079 0.755 0.077 0.765

APS-A 0.328 0.050 0.319 0.050 0.261 0.050 0.252 0.050

State
APS-B 0.329 0.050 0.330 0.050 0.266 0.050 0.259 0.050

Rep.2
R&S-A 0.318 0.470 0.322 0.570 0.252 0.505 0.249 0.560

R&S-B 0.324 0.260 0.327 0.220 0.258 0.265 0.266 0.230

RME 0.313 0.755 0.308 0.755 0.246 0.725 0.235 0.750

APS-A 2.171 0.075 1.394 0.090 1.629 0.075 1.156 0.070

Dist
APS-B 2.057 0.050 1.364 0.050 1.603 0.050 1.082 0.050

Disrupt.3
R&S-A 2.153 0.525 1.364 0.595 1.622 0.595 1.071 0.615

R&S-B 2.104 0.225 1.352 0.185 1.677 0.295 1.089 0.185

RME 2.154 0.820 1.387 0.900 1.478 0.795 1.104 0.900

APS-A 0.941 0.045 0.940 0.105 0.942 0.065 0.945 0.060

Path
APS-B 0.950 0.000 0.950 0.000 0.950 0.000 0.950 0.000

Att.4
R&S-A 0.942 0.365 0.954 0.325 0.955 0.090 0.952 0.490

R&S-B 0.951 0.190 0.964 0.295 0.954 0.045 0.955 0.145

RME 0.941 0.750 0.953 0.750 0.947 0.770 0.945 0.750

1 Impact is the difference between perturbed and unperturbed data of the probability of i1 at t1

2 Impact is the difference between unperturbed and perturbed data of the probability of i1 at t1

3 Impact is the KL divergence between state distributions under unperturbed and perturbed data
4 Impact is the Normalized-Hamming distance of most-likely state sequences perturbed data and attacker’s goal

The overall performance of the attacks appears to be influenced most by λ, i.e., the
probability of an attack changing the true observation, in the state-attraction and -
repulsion problems. However, this pattern does not necessarily hold in the other problems.
Within the distribution-disruption instances, κ has the most influence, whereas both λ
and κ have a marginal to nil effect on the path-attraction instances as a consequence of
the high w1{w2-values. The APS-A, APS-B and R&S-B algorithms identify a high-quality
attack in the state-attraction, state-repulsion, and distribution-disruption problems.
However, the identified attacks balance impact and data perturbation differently between
algorithms. The totality of these results illustrate that, in general, the trends identified
in the previous sub-section with regard to algorithmic performance are valid with varied
uncertainty levels while the improved performance of APS-A is an exception.

5.4. Case Study: Attacking an HMM for Part-of-Speech Tagging

To highlight the practical relevance of our methods, we consider attacks against
a larger-scale HMM used for natural-language processing (NLP). In particular, we
are motivated by part-of-speech (POS) tagging, a widely used approach in the lexical
analysis of text data. POS tagging improves accuracy of text analysis by reducing the
computational effort required for data processing and revealing the syntactic structure
of sentences. Herein, hidden states correspond to a POS, and the observations are words.
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Emission probabilities refer to the probability of a word given a POS, whereas transition
probabilities capture POS sequencing. Attacks in this section are accomplished using an
Apple M2 workstation with 8 GB of RAM and 8 CPU cores in order to demonstrate
algorithm efficacy even by using a standard laptop.

Concretely, we train an HMM on the Named-Entity-Recognition dataset (Kaggle,
2023). The top-300 words in the database are considered, along with all 29 POSs, in the
examination of 30-word text strings. The trained HMM is taken as the decision-maker’s
model having |Q| “ 29, |X | “ 300, |T | “ 30. As in previous sections, the attacker’s
prior beliefs are centered about the decision maker’s true model. We work in a low
uncertainty scenario. We implement R&S-B method for this case-study due to its better
scalability with respect to |X |.

Let the following pre-processed phrase from the NER data be the uncorrupted text:

mr. said among countries six party talks (among china, south korea, japan,
russia, united states north korea) north korea’s nuclear program

Figure 8 examines the utility of attacking this phrase via the R&S-B method across the
state-attraction, state-repulsion, distribution-disruption and path-attraction problems.
Specific details regarding the associated POS information for the state-attraction and
-repulsion problems, as well as the desired POS sequences for the path-attraction problem
are available online in our code repository. Attack success probabilities are similar to the
previous sections and are also detailed in the code repository. For each of the problems,
we again vary the objective weights. We alternatively set pw1, w2q to p1, 5q and p2, 1q to
explore its effect. These weights are selected to ensure problem difficulty; namely, we do
not want the attacker to be incentivized to make drastic changes to the uncorrupted text.
For each of the problem-and-weight combinations, the attack was allowed to search the
solution space for 1500, 3000, 6000 and 9000 seconds. Each experiment was performed 10
times to enable estimation of the mean expected utility as well as its standard deviation.

Examination of Figure 8 reveals several noteworthy insights. For each of the ten
R&S-B attacks performed on each problem-and-weight pair, a different ẑ˚ may be
identified based on the stochasticity inherent in the simulated-annealing optimization.
Inspection of Figure 8 confirms intuition that lower computation times result in attacks
of lesser quality. As additional computation time is allocated, it is apparent that not
only does the solution quality improve, but the reduction in variability suggest that the
algorithms converge toward an attack across the ten runs. Alternatively, variability in
the expected utility measurements is reduced when pw1, w2q “ p2, 1q, implying that, even
when allocated less computation time, the runs converge toward comparable solutions.

Additional information regarding the performance of the superlative attacks generated
using 9000 seconds of computational effort is detailed in Table 7. The same performance
metrics are tallied as in Table 6. Notably, whenever w2 ą w1, it can be observed that
the attack is minimally perturbing the true data with limited impact due to the higher
weighted cost. More aggressive and impactful attacks are identified when w1 ą w2. The
totality of these results highlight that a conventional machine can effectively corrupt
HMMs in a grey-box setting, even when the optimal attack minimally perturbs the
uncorrupted data.
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(a) State-Attraction (b) State-Repulsion

(c) Distribution Disruption (d) Path Attraction

Figure 8: Expected Utility of Attacks Plus/Minus One Standard Deviation in the POS Case Study

Table 7: Mean Impact, Proportion of Observations Attacked and Expected Utility (NER Experiment)

Problem w1 w2 Impact ∆{|T | Expected Utility

State Attraction1
1 5 0.00 0.00 0.07

2 1 0.77 0.13 0.68

State Repulsion2
1 5 0.00 0.00 -0.07

2 1 0.00 1.0 -0.14

Distribution Disruption3
1 5 1.47 0.01 -0.03

2 1 11.21 0.77 -0.59

Path Attraction4
1 5 0.53 0.00 12.17

2 1 0.71 0.74 10.08

1 Impact is the difference between perturbed and unperturbed data of the probability of i1 at t1

2 Impact is the difference between unperturbed and perturbed data of the probability of i1 at t1

3 Impact is the KL divergence between state distributions under unperturbed and perturbed data
4 Impact is the Normalized-Hamming distance of most-likely state sequences perturbed data and attacker’s goal

This feature is exemplified in the state-attraction case having pw1, w2q “ p2, 1q

wherein the attacker wishes to encourage the classification of the fifth word as a singular
proper noun. The superlative attack identified across all ten runs is listed below:

mr. said among countries u.s. party talks (among china, south korea, japan,
russia, united states north korea) north korea’s nuclear program

33



Notably, this text string is quite similar to the uncorrupted data. Their variations could
easily be attributed to a typographical error or a bug in the text’s pre-processing routine.
However, this small change greatly increases the probability that the attacker achieves
his goal; the attack increases the posterior probability of a singular-proper-noun by 0.77.
The ability of this attack to thwart the decision maker’s HMM with minimal changes to
the true data is reminiscent of adversarial examples in other applications, e.g., computer
vision (Goodfellow et al., 2014).

6. Conclusion

Probabilistic graphical models are fundamental to modern technology (Koller and
Friedman, 2009). Diverse applications, from natural language processing to autonomous
navigation, have all leveraged such models to achieve state-of-the-art results. Within
this manuscript, we have illustrated that, like other machine learning methodologies,
these models are susceptible to attack.

Focusing on HMMs, dynamic Bayesian networks with a specific structural form, we
have formulated a suite of corruption problems for filtering, smoothing and decoding
inferences. Leveraging an ARA perspective, a collection of general solution methods
was also developed by alternatively viewing the problem from frequentist and Bayesian
perspectives. Extensive empirical testing on these algorithms illustrated the devastating
impacts of even minor data perturbations on HMM inferences. Moreover, this testing
also examined the effects of HMM structure and uncertainty on the developed algorithms
highlighting that, even for more complex instances, one may identify high-quality attacks
in a reasonable amount of time. Our case study highlighted the real-world applicability
of our attacks, implying that corrupted HMM models can create adversarial HMM
examples akin to those that thwart computer vision algorithms (Goodfellow et al., 2014).

However, the development of these attacks begets numerous avenues of future inquiry.
For example, given the vulnerability of HMMs to data perturbation, there is an obvious
need for more robust HMM inference algorithms. The efficacy of the developed attacks
on a trained HMM also suggests that traditional approaches to HMM learning may be
vulnerable. Future research should therefore focus on the corruption of the Baum-Welch
algorithm as well as on modifications to robustify it. The same variety of questions can
also be formulated with respect to other probabilistic graphical models (e.g., Latent
Dirichlet Allocation models). Notably, the problems and attacks provided herein can
be directly extended to inference over alternative dynamic Bayesian networks (e.g.,
Kalman filters, autoregressive HMMs). Nevertheless, AML research upon standard
HMMs is by no means exhausted either; varied assumptions developed herein can be
relaxed to distinct, real-world settings (e.g., real-time inference or uncertain Q and X ).
Moreover, given the generality of the HMM corruption problems, the variety of prior
distributions available to the attacker, and the flexible hyperparameterization of the R&S
heuristic, additional experimentation on our algorithms is a worthwhile endeavor, as is
the development of alternative attacks. Therefore, while this research has incrementally
developed AML techniques for probabilistic graphical models, avenues of future inquiry
abound.
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Appendix A. Implementation Details of the R&S Heuristic

This appendix provides implementation details of the R&S heuristics utilized in Sec-
tions 5.2 and 5.3. We discuss the functional approximation µ̂pzn|θnq, the associated state
variables (i.e., θn), the system model (i.e., SM ), and the optimization routines used to
select zn given some parameterization of µ̂pzn|θnq. Associated code implementing the pro-
cedures discussed herein is available at https://github.com/roinaveiro/corrupting hmms.

As a functional approximation of an attack’s value, we use a fully connected neural
network. Different architectures were tested and the superlative was selected, i.e., see
Appendix A.3. The system state at each iteration n captures the current parameteri-
zation of this neural network, e.g., the arc weights. The updated state variables (i.e.,
θn`1q are identified using a stochastic-gradient-descent algorithm as the system model.
In particular, the Adam optimizer is utilized. The performance of different learning
rates is tested as well; see Appendix A.3 for additional details.

To iteratively select zn, the R&S heuristic uses an ε-greedy policy to encourage
exploration. Within each iteration of R&S, the greedy action that maximizes the objective
function under our current belief state is of foremost interest. This requires solving
a non-linear, integer optimization problem. Unfortunately, given the high cardinality
of the attack space (i.e., Z), solving this optimization via complete ennumeration is
infeasible; other canonical branch-and-bound techniques are likely to struggle as well.
Therefore, we compare the performance of two meta-heuristics to approximate this
solution: Monte Carlo Tree Search (MCTS) and Simulated Annealing. Implementation
details for both algorithms are provided subsequently in Appendix A.1 and Appendix
A.2. Hyperparameter tuning is discussed in Appendix A.3.

Appendix A.1. Monte Carlo Tree Search

To find the greedy action using MCTS, we first reformulate this optimization problem
as an undiscounted, sequential-decision problem wherein the greedy attack is constructed
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iteratively by time period. With slight recycling of notation, this problem is formally
defined by the tuple pS,A, E ,Rq wherein S is the set of all partially and fully filled
attack vectors, A is the set of feasible actions at each s P S, E is a map from S Ñ S, and
R is the set of instantaneous rewards at each s P S. At the beginning of each episode,
we start with an empty attack vector (i.e., s0). An episode concludes after the attack
vector is fully specified. This is accomplished by selecting an emission for each time t
from Apstq whereby st captures all emissions inserted into the attack up to this time.
The transition function E deterministically maps a state-action pair pst, atq into the next
state st`1 by inserting the selected emission into the attack vector. The set of state
rewards, R, varies depending upon whether the state is complete or incomplete, i.e.,
whether emissions have or have not been selected for every t P T , respectively. The
reward associated with any incomplete state is zero. However, the reward for complete
states (i.e., fully specified attack vectors) corresponds to the evaluation of µ̂ps|θnq.

Using this foundation, our MCTS algorithm constructs a tree comprised of all possible
attack vectors. Its nodes correspond to some S 1 Ď S. At each iteration of the algorithm,
the tree is traversed by selecting actions via a tree policy until a node with a child
outside of the partially constructed tree is reached. If such a node is reached, actions
are henceforth selected at random until a complete state is achieved. After reaching a
complete state, its reward is computed and used to update the value of nodes that have
been traversed in the tree such that better nodes are more likely to be selected in the
future.

More specifically, given a partially explored tree G, each MCTS iteration consists of
four distinct steps:

1. Selection. Starting from the root node, (i.e., the empty attack vector, s0), actions
are selected using the tree policy until a node with some child outside the tree is
reached. In our implementation, we use the UCT selection criterion as the tree
policy’s basis. That is, at state st, action at (leading to node Epst, atq) is identified
using

πGpstq “ argmax
aPApstq

Qpst, aq ` c ¨

d

2 logNpstq

Npst, aq

where Qpst, aq is a Monte Carlo estimate of the state-action value, Npstq is the
number of visits to the parent node, Npst, aq is the number of times action a has
been taken at node st and c is an exploration parameter. In our implementation,
we fix c “ 0.5.

2. Expansion. If a leaf node is reached in the selection step, it is appended to the
tree and the simulation step begins.

3. Simulation. Actions outside the tree are selected uniformly at random from the
available actions until a complete state has been reached.

4. Backpropagation. Upon reaching a complete state, its reward R is evaluated by
invoking µ̂ps|θnq. This is used to update the value of the leaf node reached in the
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selection step as well as each of its parents. For every ps1, aq along the traversed
path in the tree, the following updates are performed:

Nps1, aq Ð Nps1, aq ` 1

Qps1, aq Ð Qps1, aq `
R ´Qps1, aq

Nps1, aq

In our implementation of the R&S heuristic, MCTS is used to approximate the greedy
policy in each iteration of R&S (i.e., each time Step 4 is reached in Algorithm 4). In
particular, we perform 1, 000 MCTS iterations and record the best complete state reached
as the approximate greedy action.

Appendix A.2. Simulated Annealing

The second meta-heuristic used to find the action maximizing µ̂pzn|θnq is simulated
annealing (SA) (Kirkpatrick et al., 1983). SA generates a Markov chain in the space
of possible attacks, whose stationary distribution is proportional to exppµ̂pzn|θnq{Teq,
where Te is gradually decreased to 0 according to some pre-specified annealing schedule.
We use Gibbs sampling to generate such a Markov chain, sequentially sampling from
full conditional of the stationary distribution for each znt conditioned on zn´t. Te is
reduced according to the exponential decay annealing schedule suggested by Spears
(1993). Therefore, at the jth iteration of SA, we have Te “ exp p´l ¨ j{T q, where l is set
to 5.

Appendix A.3. Hyperparameter Tuning

This appendix explains how hyperparameter tuning was performed for the two R&S
variants. Specifically, we varied the following hyperparameters: the architecture of the
multilayer perceptron (MLP) neural network (i.e., the number of neurons in the two
layers), the number of SA or MCTS iterations used to find the greedy action, the learning
rate, and ε. Tables A.8 and A.9 lists the tested hyperparameter combinations.

Table A.8: Hyperparameter Combinations for the R&S-A Algorithm.

Combination MLP Architecture Iterations Learning rate ε

1 {16; 8} 100 0.005 0.05

2 {32; 16} 10 0.005 0.05

3 {16; 8} 100 0.1 0.005

4 {32; 16} 10 0.1 0.005

5 {64; 64} 100 0.005 0.05

6 {64; 64} 100 0.1 0.05
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Table A.9: Hyperparameter Combinations for the R&S-B Algorithm.

Combination MLP Architecture Iterations Learning rate ε

1 {16; 8} 50 0.005 0.05

2 {32; 16} 10 0.005 0.05

3 {16; 8} 50 0.1 0.005

4 {32; 16} 10 0.1 0.005

5 {64; 64} 100 0.005 0.05

6 {64; 64} 100 0.1 0.05

An extensive grid search on the hyperparameters was not performed; instead, a
simple search procedure was conducted to (1) examine how the algorithms behave under
different hyperparameters and (2) identify settings that perform well on the examined
instances. To do so, we replicated the testing procedure described in Sections 5.2
and 5.3 for each combination. Each algorithm-and-hyperparameter combination was
tested 10 times for run times of t15, 30, 45, ..., 1200u seconds on each problem instance.
Mean expected utility values plus/minus two standard deviations were recorded for
each run time across all 10 repetitions. Algorithm performance was judged by their
convergence time, solution quality, and relative balance of these characteristics. A
qualitative assessment of these measures was utilized for model selection.

Tables A.10 and A.11 indicate the superlative hyperparameter combinations for
each problem-and-design-point pair. The indicated hyperparameter setting is leveraged
within Sections 5.2 and 5.3, respectively. Notably, no single combination is dominant
across all instances, but some combinations were always dominated by another. For
example, combination four and three of the R&S-A and -B algorithms, respectively, are
dominated in the Section 5.2 instances. Likewise, combination six is dominated across
all problem-and-design-point pairs. Analogous patterns are apparent in the Section 5.3
testing as well.

Table A.10: Superlative Hyperparameter Combination for Section Structural Testing

Problem Algorithm
Design Point

1 2 3 4

State-Attraction
R&S-A 2 3 2 2

R&S-B 2 1 2 2

State-Repulsion
R&S-A 2 3 2 2

R&S-B 2 1 2 5

Distribution-Disruption
R&S-A 2 5 2 1

R&S-B 2 5 2 5

Path-Attraction
R&S-A 2 1 1 1

R&S-B 4 1 2 2
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Table A.11: Superlative Hyperparameter Combination for HMM Uncertainty Testing

Problem Algorithm
Design Point

1 2 3 4

State-Attraction
R&S-A 3 3 5 5

R&S-B 5 1 2 1

State-Repulsion
R&S-A 5 5 5 5

R&S-B 2 2 2 2

Distribution-Disruption
R&S-A 5 2 5 2

R&S-B 2 2 2 2

Path-Attraction
R&S-A 2 2 1 1

R&S-B 4 4 4 4
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