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ABSTRACT
In this paper, we present a deep learning based multimodal system
for classifying daily life videos. To train the system, we propose a
two-phase training strategy. In the first training phase (Phase I), we
extract the audio and visual (image) data from the original video.
We then train the audio data and the visual data with independent
deep learning based models. After the training processes, we obtain
audio embeddings and visual embeddings by extracting feature
maps from the pre-trained deep learning models. In the second
training phase (Phase II), we train a fusion layer to combine the
audio/visual embeddings and a dense layer to classify the combined
embedding into target daily scenes. Our extensive experiments,
which were conducted on the benchmark dataset of DCASE (IEEE
AASP Challenge on Detection and Classification of Acoustic Scenes
and Events) 2021 Task 1B Development, achieved the best classi-
fication accuracy of 80.5%, 91.8%, and 95.3% with only audio data,
with only visual data, both audio and visual data, respectively. The
highest classification accuracy of 95.3% presents an improvement of
17.9% compared with DCASE baseline and shows very competitive
to the state-of-the-art systems.
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1 INTRODUCTION
Recently, applying deep learning techniques to analyze videos has
achieved many successes and opened a variety of real-life applica-
tions. Indeed, a wide range of deep learning based systems have
been proposed for various human-relevant tasks of emotion recog-
nition [22], lip-reading [3], or detecting human activities [5, 16, 17],
etc. Recently, a dataset of daily-scene videos [20], which was pro-
posed by DCASE challenge [4] for a new task of audio-visual scene
classification (AVSC), was published and attracted attention from
the video research community. Similar to the systems proposed
for analyzing videos of human activities [17, 22], the state-of-the-
art systems proposed for AVSC task also leveraged deep learning
based models and presented joined audio-visual analysis. For in-
stances, the proposed systems in [1, 19] used convolutional based
models to extract audio embeddings from audio data and leveraged
pre-trained deep learning models for extracting visual embeddings
from visual data. Then, the audio embeddings and the visual em-
beddings are concatenated and fed into dense layers for classifi-
cation. To further enhance audio/visual embeddings, the authors
in [23] proposed a graphed based model which was used to learn
the audio/visual feature maps extracted from middle layers of deep
learning backbone models. The graph based model then generates a
graph based audio/visual embedding. The graph based audio/visual
embeddings are finally fused with audio/visual embeddings before
going to dense layers for classification. Meanwhile, authors in [6]
improved the audio/visual embeddings by proposing a contrastive
event-object alignment layer. The contrastive event-object align-
ment layer, which is based on the contrastive learning technique,
helps to explore the relationship between audio and visual informa-
tion by learning relative distances of event-object pairs occurring
in both audio and visual scenes.

In this paper, we also leverage deep learning techniques, propose
a deep learning based multimodal system for the task of AVSC.
We present our main contributions: (a) We propose a mechanism,
which combines a multi-model fusion and a two-phase training
strategy, to generate an audio-visual embedding representing for
one video input. (b) We evaluate our proposed deep learning based
multimodal system on the DCASE 2021 Task 1B Development set
which is the benchmark and largest dataset for the task of audio-
visual daily scene classification. Results reveal that our proposed
system is very competitive to the state-of-the-art systems.
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Figure 1: The high-level architecture of the proposed deep
learning based multimodal for AVSC task

2 PROPOSED DEEP LEARNING BASED
MULTIMODAL FOR AVSC TASK

As Figure 1 shows, the high-level architecture of our proposed deep
learning based multimodal for audio-visual scene classification
(AVSC) comprises two individual branches: the audio branch and the
visual branch, which focus on either audio or visual data extracted
from the input video. Regarding the audio branch, the audio is first
transformed into spectrograms which are then fed into three Audio
Backbones to extract audio embeddings. Meanwhile, images are
fed into two Visual Backbones to extract image embeddings. The
audio and image embeddings are then combined by a Fusion Layer
to generate an audio-visual embedding (i.e. The Fusion Layer is
denoted by the function 𝑓 ). The audio-visual embedding is finally
classified into target categories by a Dense Layer. From results
shown in recent papers [1, 6, 19], we can see that the visual data
contributes to the AVSC performance more significantly than the
audio data. If we train our proposed AVSC system with an end-to-
end training process, it possibly causes an overfitting on the visual
branch and reduces the role of the audio branch. We therefore
propose a two-phase training strategy to train our proposed AVSC
system. While the first training phase (Phase I) is used to train
and achieve the individual Audio and Visual Backbones, the Fusion
Layer and the Dense Layer are trained in the second phase (Phase
II).

2.1 Phase I: Train deep learning models on
individual audio or visual data to achieve
audio and visual backbones

In Phase I, we aim to achieve individual high-performance Audio
and Visual Backbones as shown in Figure 1. To this end, we con-
sider the AVSC task as a combination of two independent tasks
of Acoustic Scene Classification (ASC) and Visual Scene Classi-
fication (VSC). To deal with the ASC task, we leverage multiple
input spectrograms, which proves powerful to improve the ASC
performance [9, 11, 13, 14]. In particular, we propose deep learning
based systems as shown in Figure 2 to train audio data. The audio is
firstly re-sampled to 32,000 Hz, then transformed into three types
of spectrogram: Mel spectrogram (MEL), Gammatone (GAM), and
Constant-Q-Transform (CQT) where both temporal and spectral
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Figure 2: Deep learning based models with audio data
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Figure 3: Deep learning based models with visual data

features are presented. By using two channels and setting parame-
ters of the filter number, the window size, the hop size to 128, 80
ms, 14 ms, respectively, we generate MEL, GAM, and CQT spec-
trograms of 128×309×2 from one 10-second audio segment. Delta
and delta-delta are then applied to the three-dimensional spectro-
grams to obtain six-dimensional spectrograms of 128×305×6. Next,
the Mixup [18] data augmentation method is applied on the six-
dimensional spectrograms before feeding into a residual-inception
based network for classification. Regarding the residual-inception
based network for training audio spectrograms, it is separated into
two main parts: A Residual-Inception block and a Dense block. The
Residual-Inception block in this paper is the CNN-based backbone
of the novel residual-inception deep neural network architecture
which is reused from our previous works in [12]. Meanwhile, the
Dense block comprises two dense layers with detailed configuration
shown in the lower part of Figure 2. As we apply three types of spec-
trogram transformation (e.g. MEL, GAM, and CQT), we obtain three
individual deep learning based models for audio input, referred to
as the Aud-MEL, Aud-GAM, Aud-CQT models, respectively.

As regards the visual data, we propose deep learning models as
shown in Figure 3. As Fig 3 shows, the original images (i.e. two
images from each second) extracted from scene videos are first
scaled into the tensor of 224×224×3 with RGB format. Then, the
Mixup [18] data augmentation method is applied on the scaled
images before feeding into classification models. To construct the
classification models, we are inspired by [21] which shows that a
combination of Inception based and ConvNet based models proves
effective to improve the performance of VSC tasks. We, therefore,
select InceptionV3 and ConvNeXtTiny networks from Keras li-
brary [2] for evaluating the VSC task in this paper. As both In-
ceptionV3 and ConvNeXtTiny networks were trained with Ima-
geNet [15] in advance, we reuse the trainable parameters from
the first layer to the global pooling layer of these networks. We
then connect these pre-trained layers with a two dense layers as
shown in the lower part in Figure 3 to perform the InceptionV3
and ConvNeXtTiny based classification models for the VSC task in
this paper. The InceptionV3 and ConvNeXtTiny based classifiers,
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which are finetuned on the downstream VSC task, are referred to
as Vis-CONV and Vis-INC models, respectively.

Given the individual pre-trained models of Aud-MEL, Aud-GAM,
Aud-CQT for audio input and Vis-CONV and Vis-INC for visual
input, we remove header layers of these pre-trained models (i.e. The
header layers of the pre-trained models are either the softmax layer
or the final dense layer) to perform the Audio and Visual Backbones
as shown in Figure 1. In the other words, when we feed an audio
or visual data into the pre-trained models of Aud-MEL, Aud-GAM,
Aud-CQT, Vis-CONV, Vis-INC, the feature maps extracted at the
first fully connected FC(1024) or at second fully connected FC(10)
are considered as the audio and visual embeddings as shown in
Figure 1.

2.2 Phase II: Train the Fusion Layer and the
Dense Layer

In this Phase II, we aim to train the Fusion Layer and the Dense
Layer as shown in the lower part of the Figure1. Regarding the
Fusion Layer, it is used to combine audio and visual embeddings,
which are extracted from the Audio and Visual Backbones, to gener-
ate an audio-visual embedding representing for one video input. In
this paper, we proposed three combination methods for the Fusion
Layer. Additionally, we have two types of audio/visual embeddings:
The first type of audio/visual embeddings are extracted from the
first fully connected layer FC(1024) of the pre-trained deep learning
based models: Aud-MEL, Aud-GAM, Aud-CQT, Vis-CONV, Vis-INC;
and the second type of audio/visual embeddings are extracted from
the second fully connected layer FC(10) of these pre-trained deep
learning based models. As a result, we totally evaluate six types
of Fusion Layer, referred to as 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, and 𝑓6. While 𝑓1, 𝑓2, 𝑓3
are three types of combinations for the first type of audio/visual
embeddings, 𝑓4, 𝑓5, 𝑓5 are for the second type of audio/visual em-
beddings.

Let consider {aeg, aem, aec, vei, vec} ∈ R1024 as the the first type
of audio and visual embeddings extracted from the the first fully
connected layer FC(1024) of the Audio and Visual Backbones, the
fusion functions of 𝑓1, 𝑓2, 𝑓3 representing for the Fusion Layer are
described by

𝑓1 = aeg .w1 + aem .w2 + aec .w3 + vei .w4 + vec .w5 + b, (1)

𝑓2 = (aeg .w1+aem .w2+aec .w3) .wa+(vei .w4+vec .w5).wv+b, (2)
𝑓3 = 𝑐𝑜𝑛𝑐𝑎𝑡 [(aeg .w1 + aem .w2 + aec .w3), (vei .w4 + vec .w5)], (3)

where {w1,w2,w3,w4,w5,wa,wv, b} ∈ R1024 are trainable param-
eters.

Regarding the fusion function 𝑓1, we assume that individual au-
dio/visual embeddings have a linear relation across each dimension.
Therefore, we apply the element-wise product between each train-
able vector of w1,w2,w3,w4,w5 and each individual embedding
before adding a bias b. By this way, a linear function, which helps
to learn the relation of audio/visual embeddings across 1024 dimen-
sion, is established. Meanwhile, in the fusion function 𝑓2, we first
apply the linear combination for only audio embeddings and for
visual embeddings independently. Then, we again apply the linear
combination for both audio and visual embeddings using trainable
vectors of wa,wv and b. For the fusion function 𝑓 3, we also first
apply the linear combination for only audio embeddings and only

visual embeddings independently. We then concatenate two audio
and visual embeddings to perform one audio-visual embedding.
The fusion functions 𝑓4, 𝑓5, 𝑓6 share the same equation as 𝑓1, 𝑓2, 𝑓3
respectively with the second type of audio/visual input embeddings
of {aeg, aem, aec, vei, vec} ∈ R10 and the trainable parameters of
{w1,w2,w3,w4,w5,wa,wv, b} ∈ R10.

The output of the Fusion Layer, known as the audio-visual em-
bedding, is finally classified by a Dense Layer performed by a fully
connected layer FC(10) and a Softmax layer as shown in the Fig-
ure 1. Notably, as we freeze the Audio and Visual Backbones in the
Phase II training process, the model is forced to learn the Fusion
Layer and the Dense Layer.

3 EXPERIMENTAL RESULTS AND
DISCUSSIONS

3.1 Implementation of deep learning models
We apply Tensorflow framework for implementing all deep learning
basedmodels in this paper. Asmixup [18] data augmentation is used
for audio spectrograms, image frames, and audio/visual embeddings
to enforce classifiers, the labels of the augmented data are no longer
one-hot. We therefore use Kullback-Leibler (KL) divergence loss to
train back-end classification models:

𝐿𝑂𝑆𝑆𝐾𝐿 (Θ) =
𝑁∑︁
𝑛=1

y𝑛 log
(
y𝑛
ŷ𝑛

)
+ 𝜆

2
| |Θ| |22, (4)

where 𝑁 is the training samples, Θ present the trainable network
parameters, and 𝜆 denotes the ℓ2-norm regularization coefficient.
yn and ŷn denote the ground-truth and the network output, re-
spectively. All the training processes in this paper are run on two
GeForce RTX 2080 Titan GPUs using Adam method [7] for opti-
mization.

3.2 Datasets and evaluation metric
This dataset is referred to as DCASE Task 1B Development, which
was proposed for DCASE 2021 challenge [4]. The dataset is slightly
imbalanced and contains both acoustic and visual information,
recorded from 12 large European cities: Amsterdam, Barcelona,
Helsinki, Lisbon, London, Lyon, Madrid, Milan, Prague, Paris, Stock-
holm, and Vienna. It consists of 10 scene classes: airport, shopping
mall (indoor), metro station (underground), pedestrian street, pub-
lic square, street (traffic), traveling by tram, bus and metro (un-
derground), and urban park, which can be categorized into three
meta-class of indoor, outdoor, and transportation. The dataset was
recorded by four recording devices simultaneously with the same
setting of 48000 Hz sampling rate and 24 bit resolution. We obey
the DCASE 2021 Task 1B challenge [4], separate this dataset into
training (Train.) subset for the training process and evaluation
(Eval.) subset for the inference. As regards the evaluation metric,
the Accuracy (Acc.%), which is commonly applied in classification
tasks [4] and is also proposed for DCASE Task 1B challenge, is used
to evaluate the AVSC task in this paper.

3.3 Experimental results and discussion
We first evaluate the performance of our proposed systems with
different types of fusion methods mentioned in Section 2.2. As the
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(a) Only Audio Data (b) Only Visual Data (c) Audio & Visual Data

Figure 4: The confusion matrix results of the propose systems using 𝑓4 fusion method with only audio data (a), with only visual
data (b), and with both audio and visual data (c)

Table 1: The performance of the proposed system (Acc.%)
with different types of fusion function: 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6.

Category 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

Airport 87.9 82.2 85.4 87.9 86.8 83.3
Bus 96.9 96.3 99.1 97.6 99.1 97.6
Metro 97.5 94.2 96.9 97.2 98.1 96.9
Metro Stattion 98.2 97.7 98.2 98.7 99.0 97.9
Park 95.6 92.7 93.8 97.9 99.0 98.2
Public square 92.0 91.7 89.7 91.5 87.9 88.1
Shopping mall 91.0 90.7 88.9 93.5 92.5 92.0
Street pedestrian 99.3 99.5 99.5 99.5 99.5 99.0
Street traffic 96.3 96.5 96.8 96.0 95.8 95.5
Tram 83.1 91.2 84.1 90.6 90.3 85.7
Overall 94.1 93.7 93.6 95.3 95.0 93.9

results show in Table 1, fusion methods of 𝑓4, 𝑓5, 𝑓6 outperform
𝑓1, 𝑓2, 𝑓3 respectively. In the other words, the fusions of audio/visual
embeddings extracted from the second fully connected layer FC(10)
are more effective rather than the fusions of audio/visual embed-
dings from the first fully connected layer FC(1024). We also see that
the best accuracy score of 95.3% is achieved from 𝑓4 method which
presents a linear combination of all five audio/visual embeddings.

We then evaluate the performance comparison among the pro-
posed systems using 𝑓4 fusion of only audio data, of only visual
data, of both audio and visual data. As the Figure 4 shows, the
proposed AVSC system using only visual data (91.8%) outperforms
the system with only audio data (80.5%) over almost categories,
except of ‘Tram’ and ‘Park’. When both audio and visual data are
used, this helps to improve the performance in all categories (Most
categories record have accuracy more than 90%, except ‘Airport’
with 88.0%).

We compare our best systems (i.e. using 𝑓4 fusion) with the
state-of-the-art systems. As the Table 2 shows, our proposed sys-
tems using only audio or using only visual data outperforms the
state-of-the-art systems, records the accuracy of 80.5% and 91.8%,
respectively. Our proposed system using both audio and visual data
achieves the top-2 after the system from [10]. However, the top-1
system [10] presented an intensive ensemble of nine large deep
learning models (EfficientNet, ResNeSt, and RegNet for directly
training audio data; ResNet-6.4F, FesNetSt-50d, HRNet-W18 for
directly training visual data; CLIP based networks of ResNet-101,

Table 2: Compare our AVSC system to the state-of-the-art
systems (Acc.%) with only using audio data, with only using
visual data, and with using both audio & visual data

Authors Audio Visual Audio & Visual
DCASE baseline [20] 65.1 77.0 77.4
Javier [8] 69.0 87.0 90.0
Zhou et al. [23] - 89.5 91.6
Hou et al. [6] 73.6 88.9 94.1
Wang et al. [19] 75.2 80.3 94.2
Chen et al. [1] 78.0 90.9 94.6
Soichiro [10] 78.1 90.9 96.1
Our best system 80.5 91.8 95.3

ResNet-50x4 ViT-B32 for extracting visual embeddings), which re-
quires nine individual processes as well as a post processing method
for an inference. Meanwhile, our proposed system combines five
lighter models (3 residual-inception based models for audio data
(36 M trainable parameters), InceptionV3 and ConvTiny based mod-
els for visual data (69.4 M trainable parameters)) and presents an
end-to-end inference process.

4 CONCLUSION
We have proposed a deep learning based multimodal system with
the two-phase training strategy for classifying daily life videos.
Our proposed model, which makes use of a multi-spectrogram
approach for audio data (i.e. MEL, GAM, and CQT) and multiple
networks for visual data (InceptionV3 andConvNeXtTiny), achieves
the best performance of 95.3% on the benchmark dataset of DCASE
2021 Task 1B. The experimental results prove that our proposed
AVSC system is very competitive to the state-of-the-art systems
and potential for applying to real-life applications.
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