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Abstract. Existing speaker diarization systems typically rely on large
amounts of manually annotated data, which is labor-intensive and diffi-
cult to obtain, especially in real-world scenarios. Additionally, language-
specific constraints in these systems significantly hinder their effective-
ness and scalability in multilingual settings. In this paper, we propose a
cluster-based speaker diarization system designed for multilingual tele-
phone call applications. Our proposed system supports multiple lan-
guages and eliminates the need for large-scale annotated data during
training by utilizing the multilingual Whisper model to extract speaker
embeddings. Additionally, we introduce a network architecture called
Mixture of Sparse Autoencoders (Mix-SAE) for unsupervised speaker
clustering. Experimental results on the evaluation dataset derived from
two-speaker subsets of benchmark CALLHOME and CALLFRIEND tele-
phonic speech corpora demonstrate the superior performance of the pro-
posed Mix-SAE network to other autoencoder-based clustering meth-
ods. The overall performance of our proposed system also highlights the
promising potential for developing unsupervised, multilingual speaker di-
arization systems within the context of limited annotated data. It also
indicates the system’s capability for integration into multi-task speech
analysis applications based on general-purpose models such as those that
combine speech-to-text, language detection, and speaker diarization.

Keywords: Unsupervised speaker diarization· Whisper · Mixture of
sparse autoencoders · Deep clustering · Telephone call.

1 Introduction

Sound-based applications have drawn significant attention from the research
community and have become an integral part in the forefront of driving in-
novation. These applications involve advanced audio processing techniques to
analyze and interpret various types of sound data (e.g. acoustic scenes [25],[24]),
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sound events [18], machinery sound [19], human speech [14]), enabling the core
functionality in many intelligence systems. In human speech analysis, speaker di-
arization plays a crucial role by identifying and segmenting audio streams based
on speaker identity, making it essential for various applications such as commu-
nication (e.g. customer support calls), security (e.g. voice tracking), healthcare
(e.g. patient monitoring), smart home (e.g. personal assistants), etc. Typically, a
cluster-based speaker diarization system consists of five modules. The traditional
approach to such a system is illustrated at the top of Fig. 1. The preprocessing
module first converts raw audio into a suitable format, followed by the voice
activity detection (VAD) module extracting speech segments. These segments
are then divided into fixed-length speaker segments. The speaker embedding ex-
tractor converts these segments into vectors representing speaker characteristics,
and a clustering algorithm assigns speaker labels. Among these modules, speaker
embedding and clustering are crucial components to enhance the performance
of a cluster-based speaker diarization system [22].

Regarding the speaker embedding extractor, numerous approaches have been
proposed for speaker embedding extraction, including metric-based models (GLR
[8], BIC [32], etc), probabilistic models (GMM-UBM [28], i-vectors [6], etc),
and neural network-based models (d-vectors [33], x-vectors [30], etc.). All these
methods require a substantial amount of annotated data, especially for neu-
ral network-based approaches, to optimize speaker feature extractors. However,
training these extractors on one type of dataset could reduce the model’s ability
to generalize to diverse or unseen data, particularly from different domains. In
addition, datasets for speaker diarization mainly support one single language,
due to the labor-intensive and time-consuming nature of collecting data and in-
sufficient availability of data from diverse languages, limiting the effectiveness of
speaker diarization systems in multilingual speech analysis applications.

Concerning the clustering module, common methods such as Agglomera-
tive Hierarchical Clustering (AHC) [9], k-Means [35], Mean-shift [31] have been
proposed. However, these methods operate directly on the input vector space
and rely heavily on distance-based metrics, without leveraging representation
learning techniques to uncover deeper patterns. While some deep learning-based
frameworks, such as DNN [12], GAN [21], and Autoencoder [10], incorporate
representation learning for speaker embeddings, they often require pre-extracted
embeddings (e.g. x-vectors) that fit on certain datasets and are primarily evalu-
ated on single-language datasets, typically English.

To address existing limitations, we aim to develop an unsupervised speaker
diarization system that does not rely on large training datasets and supports
multiple languages. For speaker embedding extraction, we use the multilingual
Whisper model. This model is trained on diverse audio data for relevant tasks
such as speech recognition, language identification, and translation. However, its
applicability in speaker diarization task remains unexplored. Thus, leveraging
Whisper’s scalability and robustness, we explore its potential to produce high-
quality speaker embeddings for diarization, assuming that as a general-purpose
model, Whisper can learn representations that incorporate various aspects of
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Fig. 1. The high-level architectures of (A) Traditional cluster-based speaker diarization
system and (B) Our proposed unsupervised speaker diarization system

large training data (e.g., phonetic content, acoustic features) that may be useful
for diarization task, despite being primarily designed for speech recognition and
speech-to-text transcription [30]. For speaker clustering, we propose an unsuper-
vised deep clustering network called Mixture of Sparse Autoencoders (Mix-SAE)
to cluster the extracted embeddings. Overall, our key contributions can be sum-
marized as follows:

– We explored the Whisper model’s capability in the diarization task by using
it as an alternative to conventional speaker embedding extractors, eliminat-
ing the need for annotated training data in developing diarization systems.

– Inspired by the work in [5], we proposed the Mix-SAE network for speaker
clustering, which enhances both speaker representation learning and cluster-
ing by using a mixture of sparse autoencoders with pseudo-label supervision.

– Through extensive experiments, we demonstrated that speaker diarization
can be effectively integrated into Whisper-based systems, enabling compre-
hensive and multilingual speech analysis applications that combine speech-
to-text, language identification, and speaker diarization. An example of a
Whisper-based speech analysis application can be found at 1.

The remainder of this paper is organized as follows: The overall proposed
speaker diarization system is described in Section 2. Next, Section 3 comprehen-
sively describes our proposed deep clustering framework (Mix-SAE). Experimen-
tal settings and results are discussed in Section 4. The conclusion is represented
in Section 5.

2 The Overall Proposed System

Our proposed system pipeline is comprehensively described at the bottom
of Fig. 1. Generally, the system comprises three main blocks: Front-end prepro-
1 https://huggingface.co/spaces/AT-VN-Research-Group/SpeakerDiarization

https://huggingface.co/spaces/AT-VN-Research-Group/SpeakerDiarization
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Table 1. The Pre-trained Whisper Models

Version Parameters Embedding Dimension
Tiny 39M 384
Base 74M 512
Small 244M 768

Medium 769M 1024
Large 1550M 1280

cessing, Speaker embedding extraction and Unsupervised clustering. The next
subsections represent each block of the overall pipeline in detail.

2.1 Front-end preprocessing

Firstly, the input audio is divided into fixed-length segments of W seconds
and re-sampled to 16 kHz using Librosa toolbox [11]. To match the Whisper
encoder’s input requirements, zero-padding is applied to the segments. Next, a
voice activity detection (VAD) [26] is performed using an energy-based thresh-
old to extract speech segments, which are then converted into spectrograms via
Short-time Fourier Transform (STFT) with the setting of 400 filters, 10-ms win-
dow size, and a 160-sample hop size, respectively. These spectrograms are used
as inputs to the Whisper encoder for speaker embedding extraction.

2.2 Speaker embedding extraction using Whisper model

In our work, we explore using the Whisper model as an alternative to conven-
tional speaker embedding extractors, leveraging its scalability and diverse train-
ing data. We aim to utilize Whisper’s robustness and generalization to capture
various speaker characteristics across languages and domains. This approach al-
lows us to obtain speaker embeddings directly from Whisper, bypassing the need
for specific training datasets. For each speech segment, we generate the speaker
embedding by feeding its spectrogram into the Whisper model. The final one-
dimensional speaker embedding is derived by averaging the 2D tensor output
from the last residual attention block of the Whisper encoder along the second
axis, with its dimension varying by Whisper model versions, as shown in Table 1.

2.3 Unsupervised Clustering

Given the speaker embeddings extracted from the Whisper model, the un-
supervised clustering block groups together speech segments that are likely to
be from the same speaker. In this work, we propose a new unsupervised deep
clustering method called Mixture of Sparse Autoencoders (Mix-SAE). The pro-
posed network uses a Mixture of Experts (MoE) architecture applied to Sparse
Autoencoders (SAE), as detailed in Section 3. After clustering, we assign speak-
ers to each segment and generate the diarization prediction by organizing the
segments according to these assignments.
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Fig. 2. The Sparse Autoencoder Architecture (SAE)

3 Mixture of Sparse Autoencoder Deep Clustering
Network (Mix-SAE)

Our proposed Mix-SAE architecture, shown in Fig. 3, consists of two main
parts: A set of k-sparse autoencoders, each representing a speaker cluster; and
a gating projection that interprets the outputs produced by each autoencoder
and assigns the input to a specific sparse autoencoder via its trainable weights.

3.1 Individual Sparse Autoencoder (SAE)

Consider one sparse autoencoder A, represented at Fig. 2. The sparse au-
toencoder A has 2L + 1 layers, including one encoder (E) with L layers, one
decoder (D) with L layer and one latent layer. We denote a

(l)
j as the activation

of hidden unit j at the l-th hidden layer, z(i)j is the input of i-th sample that
leads to hidden unit j. Inspired from [17], we obtain the average activation of
hidden unit j at l-th layer over one batch of N samples, which is written as:

ρ̂
(l)
j =

1

N

N∑
i=1

[
g
(
a
(l)
j (z

(i)
j )

)]
(1)

where the mapping g(.) uses the sigmoid function, which aims to scale the activa-
tion parameter to [0; 1] and avoid too large value of ρ̂(l)j . The sparsity constraint
ensures the average activation ρ̂

(l)
j is close to the sparsity parameter ρ, which

is quite small. This helps the model learn meaningful features while avoiding
copying or memorizing the input by enforcing a limited number of activation
neurons in the hidden layer. To achieve the approximation ρ̂j ≈ ρ, we leverage
Kullback–Leibler divergence penalty term [17]. The KL penalty term applied for
the l-th hidden layer that has n(l) hidden units can be written as:

L(l)
pen =

n(l)∑
j=1

KL(ρ||ρ̂(l)j ) =

n(l)∑
j=1

ρ log
ρ

ρ̂
(l)
j

+ (1− ρ) log
1− ρ

1− ρ̂
(l)
j

(2)
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Then, the penalty term is calculated for all hidden layers of the autoencoder A
(except the latent layer) by taking the sum of KL terms as:

Lpen =

2L∑
l=1

n(l)∑
j=1

ρ log
ρ

ρ̂
(l)
j

+ (1− ρ) log
1− ρ

1− ρ̂
(l)
j

(3)

We also apply MSE loss for the pair of input data x and reconstruction data
x for one batch of N samples as:

LMSE =
1

2N

N∑
i=1

||xi −D (E(xi)) ||22 (4)

Given the KL penalty and MSE losses, we define the final objective function
for the optimization of one individual sparse autoencoder A:

LSAE = LMSE + βLpen (5)

where β is the parameter to control the effect of sparsity constraint on the
objective function.

3.2 k-Sparse Autoencoders

Given the problem of clustering a set of M points {x(i)}Mi=1 ∈ Rm into
K clusters, the classical k-Means algorithm uses a centroid to represents each
cluster in the embedding space, the centroids are mostly calculated by taking
the average of all points belonging to that cluster. Inspired by [5] and [20], we
use k-autoencoders to represent k clusters, with each autoencoder’s latent space
acting as a cluster centroid. In this paper, we use sparse autoencoders instead
of standard ones, resulting in k-sparse autoencoders as shown in Fig.3. This
approach allows data points in the same cluster have their own autoencoder,
making feature learning more efficient compared to using a single autoencoder
for all data [5]. In our deep clustering network, all k-sparse autoencoders share
the same settings and loss function LSAE from Equation 5.

3.3 Gating Projection

The role of the Gating Projection (G) is to assign weights p̂ = [p̂1, p̂2, ..., p̂k]
to the outputs of k-sparse autoencoders based on the input data. Given the
weights of p̂ = [p̂1, p̂2, ..., p̂k], the Gating Projection is also utilized to assign
labels for clusters during the inference phase. In this work, the Gating Projection
leverages an MLP architecture with a single linear layer, followed by Leaky
ReLU activation and the final softmax layer. Given the input data x, the Gating
Projection (G) produces weights p̂ = [p̂1, p̂2, ..., p̂k] as:

p̂ = [p̂1, p̂2, ..., p̂k] = Softmax (Wx+ b) ∈ Rk (6)

where W ∈ Rk×m, b ∈ Rk are the trainable weights and bias of the linear layer
in the gating projection.
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3.4 Training strategy

The training strategy for our proposed Mix-SAE clustering network includes
two steps: Pre-training and Main-training.

In the Pre-training step as shown in Fig. 4, we first train a single main sparse
autoencoder Apre as shown in the upper part of Fig. 4, for the entire dataset
using the loss function described at equation 5. After training the main sparse
autoencoder Apre, one off-the-shelf cluster algorithm such as AHC or k-Means, is
utilized to obtain initial pseudo-labels P [0] from the learned latent representation
of the sparse autoencoder Apre. Next, we initialize the parameters of k-sparse
autoencoders by sequentially training the j-th sparse autoencoder Aj with the
subset of points such that P [0][c = j], as shown in the lower part of Fig. 4,
where c denotes the cluster index, j = 1, 2, ..., k. Notably, the training process
of k-sparse autoencoders also use Equation 5 as the loss function.

The next Main-training step is described in Fig. 3. This step involves the
joint optimization of the k-sparse autoencoders with initialized parameters ob-
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tained from the Pre-training step, and the predicted probabilities from the gating
projection. Given k-sparse autoencoders {A1(θ1),A2(θ2), ...,Ak(θk)}, where θj
is the parameters of encoder (Ej) and decoder (Dj) of sparse autoencoder Aj ,
j = 1, 2, ..., k, and the parameters (W , B) of the gating projection G, the main
objective function of the proposed Mix-SAE network for one batch of N samples
[x(1),x(2), ...,x(N)] is defined as:

Lmain(θ1, θ2, ..., θk,W ,B) = Lrec + αLent (7)

where α is the parameter to constrain the effect of both terms on the main
objective function.

The term Lrec is the weighted sum of reconstruction error over k-sparse au-
toencoders. This term ensures that the sparse autoencoders could have informa-
tion on inter-cluster reconstruction error to further strengthen feature learning
within their own clusters. We define this term as:

Lrec = − 1

N

N∑
i=1

k∑
j=1

p̂
(i)
j exp

[
−1

2

(
x(i) −Dj(Ej(x(i)))

)2
]

s.t.
k∑

j=1

p̂
(i)
j = 1, ∀i = 1, 2, . . . , N.

(8)

where Dj(Ej(x(i))) is the output of the j-th sparse autoencoder given the input
sample x(i); the probability p̂

(i)
j , which is computed from (W , B) in Equation 6,

is the weight from the gating projection assigned to the j-th reconstruction loss.
The term Lent is referred to as the pseudo-label guided supervision loss.

We denote the pseudo-labels for one batch of N samples at epoch t as: P[t] =

[p
[t]
1 ,p

[t]
2 , ...,p

[t]
N ], where p

[t]
i ∈ Rk. The supervision loss is defined as the Cross-

Entropy loss between the pseudo-labels p[tu] previously updated at epoch tu and
the prediction of the gating projection p̂[tu] at the current epoch t:

Lent = − 1

N

N∑
i=1

p
[tu]
i log p̂

[t]
i (9)

The entropy loss Lent uses pseudo-labels to provide additional learning sig-
nals, simulating a semi-supervised setting. This guides the model towards correct
clustering and enhances feature learning [13]. Notably, pseudo-labels are peri-
odically updated after τ epochs during optimization by the predictions of the
gating projection G at the current epoch t using Equation 6. This process aims
to reinforce reliable pseudo-labels while correcting noisy ones over time.

After the Main-training step, final cluster label can be inferred via the gating
projection G. Given each data sample x, the probability vector p̂ is calculated
using equation 6. Then, the cluster label is determined as:

ĉ = argmax p̂ = argmax
j=1,2,..k

p̂(c = j|x) (10)

Overall, steps in the training strategy of our proposed Mix-SAE clustering net-
work can be summarized in Table 2.
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Table 2. Mix-SAE Deep Clustering Network

Algorithm 1: Mix-SAE mini-batch training strategy
Input: One batch of N points X={x(i)}Ni=1 ∈ Rm.
Output: One of k cluster labels for N input points.
Components:
- A set of k-autoencoders: {A1,A2, ...,Ak}

x→ x̄j = Dj(Ej(x)), j = 1, 2, ..., k.

- The Gating Projection G that produces pseudo-labels and assigns input to suitable autoencoders.
p = Softmax(Wx+ b) ∈ Rc.

• Pre-training:
- Train a single autoencoder Apre for the entire dataset with the objective function (5).
- Use one off-the-shelf cluster algorithm to initialize pseudo-labels P [0] for the entire dataset.
for j = 1 to k do:

Train j-th sparse autoencoder with data points P [0][c = j].
end for
• Main-training:
for t = 1 to T do:

Train the set of k sparse auencoders and the gating projection G jointly using the main objective
function (7).
if t mod τ = 0 then:

Update new pseudo-labels P [tu] for the batch X:
tu ← t

P [tu] = argmax
axis = 1

[Softmax(WX +B)]

Get final cluster result: Get the final cluster result for the batch X via the gating projection G:

P̂ = argmax
axis = 1

[Softmax (WX +B)]

4 Experimental Settings And Results

4.1 Evaluation Datasets

To evaluate the performance and generalization of our proposed system
to diverse data sources, we gather data from two benchmark corpora CALL-
HOME [2],[4],[1] and CALLFRIEND [16], [15]. Each corpus includes various
language subsets like English, German, French, Spanish, and Japanese, with
multiple telephone conversations from different sources. For evaluation, we use
two-speaker subsets of the above benchmark corpora (the most common case in
telephone call applications), to form a combined dataset called SD-EVAL. The
SD-EVAL dataset comprises 127 recordings totaling around 6.35 hours and is
divided into four language-specific subsets: English (EN), Spanish (SPA), Ger-
man (GER), and French (FR). Each subset has 25 to 35 recordings, each lasting
2 to 5 minutes.

4.2 Evaluation Metrics

We evaluated the proposed sysetm with diarization error rate (DER).

4.3 Experimental settings

The proposed method was implemented with deep learning framework Py-
Torch [23]. The network architecture consists of autoencoders with hidden layers
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Table 3. Diarization Error Rate (DER) (%) of different systems on SD-EVAL dataset
(Whisper version: Tiny, no tolerance)

W = 0.2 s W = 0.4 s W = 0.6 s W = 0.8 s W = 1.0 s

Methods EN FR GER SPA EN FR GER SPA EN FR GER SPA EN FR GER SPA EN FR GER SPA

k-Means 44.77 51.42 49.11 48.25 43.75 51.92 43.84 47.08 38.72 46.88 40.97 42.77 40.23 46.61 44.11 44.38 42.06 47.72 46.13 44.66

AHC 38.42 46.72 41.41 42.93 47.64 52.81 46.33 50.69 40.50 48.69 42.90 43.15 38.55 45.91 43.02 43.44 42.91 47.81 47.63 44.80

SpectralNet [29] 36.18 44.62 40.02 46.03 40.44 51.63 41.22 47.52 37.06 44.68 41.29 42.69 36.11 44.67 44.16 46.42 41.88 46.08 44.31 47.23

DCN [34] 32.15 35.77 36.51 36.98 37.42 38.92 42.17 43.01 32.08 37.57 38.84 40.77 33.02 43.72 44.23 40.55 40.17 45.96 40.21 38.51

DAMIC [5] 27.78 36.22 36.93 35.21 27.97 35.96 36.14 35.11 28.11 36.67 34.66 33.31 27.22 36.91 34.78 34.22 26.95 36.91 36.11 34.65

k-DAE [20] 29.12 37.91 41.23 37.00 30.53 39.81 37.10 37.29 32.72 38.84 34.96 35.23 33.33 38.55 34.24 35.51 30.36 37.32 36.22 35.02

Mix-SAE-V1 32.18 38.61 36.07 36.78 29.02 35.92 36.51 35.04 27.28 37.01 34.98 34.03 27.90 37.51 34.42 33.83 28.00 37.88 36.18 34.29

Mix-SAE-V2 28.72 43.22 40.66 36.32 29.62 40.07 36.71 35.72 27.81 36.83 34.90 33.54 27.98 39.68 34.62 33.21 27.93 38.05 36.73 33.82

Mix-SAE 26.51 36.12 35.00 34.91 26.88 37.30 35.64 34.33 27.08 36.70 34.55 32.82 27.24 38.39 34.17 32.03 26.85 37.57 35.33 33.82

[256, 128, 64, 32] for the encoder and mirrored for the decoder, using Leaky ReLU
activation and Batch Normalization followed each hidden layer. The latent vec-
tor size is also k (equal to the number of speakers), with mini-batch size N = 16.
We use k-Means++ [3] to initialize pseudo-labels in the Pre-training step.

Regarding hyperparameters, we set sparsity parameter ρ = 0.2, sparsity con-
straint β = 0.01, pseudo-label supervision α = 1. The training process uses
learning rate 0.001 and weight decay 5 × 10−4. The Pre-training step involves
50 epochs for the main autoencoder Apre and 20 epochs for each of k-sparse au-
toencoders. The Main training step runs for 29 epochs and updates pseudo-labels
after 10 epochs.

4.4 Results and Discussion

Speaker clustering methods: We evaluate several speaker clustering meth-
ods using embeddings from the tiny Whisper model, including k-Means, Agglom-
erative Hierarchical Clustering (AHC), SpectralNet, autoencoder-based methods
such as DCN, DAMIC, k-DAE, and our proposed Mix-SAE. Experiments were
conducted with segment sizes (W ) ranging from 0.2s to 1.0s. As shown in Table
3, Mix-SAE consistently outperforms other methods, achieving the best perfor-
mance in English with a DER of 26.51%. This can be attributed to high-quality
embeddings from Whisper’s extensive English training data. While other meth-
ods, especially autoencoder-based ones like DCN and k-DAE, show variability
with segment size, Mix-SAE remains stable across different W values, demon-
strating its efficiency in capturing speaker features from variable-length segments
(e.g. the proposed system achieves DER scores of 26.51%, 26.88%, 27.08%,
27.24%, 26.85% on English and 35.00%, 35.64%, 35.55%, 34.17%, 34.55% on
German with W = 0.2, 0.4, 0.6, 0.8, 1.0, respectively). For an ablation study,
we establish two other systems: Mix-SAE-V1 (Mix-SAE without sparsity loss in
equation 5), Mix-SAE-V2 (Mix-SAE w/o pseudo-label loss in equation 7). Re-
sults in Table 3 demonstrate the role of both sparsity loss and pseudo-label loss
in improving the overall performance. For instance, an improvement of 5.67%
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Fig. 5. Evaluation: (a) DER scores using speaker embeddings from different Whisper
versions; (b) Compare DER score versus complexity across deep clustering methods

and 2.21% is obtained in the case of English with W = 0.2s when Mix-SAE is
compared to Mix-SAE-V1 and Mix-SAE-V2, respectively.

The quality of speaker embeddings: We assessed the impact of speaker
embeddings on diarization performance, as shown in Fig. 5a, using different ver-
sions of the Whisper model (Tiny, Base, Small, Medium, Large) with W set to
0.2s in English. Larger Whisper models provided superior embeddings, leading
to better performance, with the best DER score of 17.75% (0.25s tolerance).
This highlights the potential of using general-purpose like Whisper for multilin-
gual and unsupervised speaker diarization systems as well as integrating speaker
diarization as a component in Whisper-based speech analysis applications.

The model complexity: Fig. 5b shows the trade-off between model com-
plexity and diarization performance (DER) across deep clustering methods. Our
Mix-SAE achieves 26.51% DER with 334k parameters, striking a good balance
between accuracy and efficiency. Additionally, when combined with Whisper
Tiny (39M), the system is promising for integration into edge devices for sound
applications [7], [27].

Visualization and the effect of Pre-training step: We visualized 2-
speaker embeddings after the Pre-training step in our Mix-SAE by applying
t-SNE. As Fig. 6 shows, the sparse autoencoders effectively learn underlying pat-
terns from extracted speaker embeddings and map them into latent space where
the embeddings of two speakers were relatively well-separated. These clustering
results serve as pseudo-labels for optimizing the deep clustering network at the
next Main-training step.

5 Conclusion

This paper has presented an unsupervised speaker diarization system for
multilingual telephone call applications. In this proposed system, the traditional
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(a) English (W = 0.2s) (b) French (W = 0.2s)

(c) German (W = 0.2s) (d) Spanish (W = 0.2s)

Fig. 6. t-SNE visualization of speaker embeddings after the pre-training step (Whisper
version: Tiny)

feature extractor was replaced with the Whisper encoder, benefiting from its
robustness and generalization on diverse data. Additionally, the Mix-SAE net-
work architecture was also proposed for speaker clustering. Experimental results
demonstrate that our Mix-SAE network outperforms other compared cluster-
ing methods. The overall performance of our system highlights the effectiveness
of our approach when exploring Whisper embedding for the diarization task to
develop unsupervised speaker diarization system in the contexts of limited anno-
tated training data. Furthermore, the results also enhances the system’s ability
to integrate into Whisper-based multi-task speech analysis application. Overall,
this work indicates a promising direction toward developing generalized speaker
diarization systems based on general-purpose models in future work.
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